SUBCLINICAL BOVINE MASTITIS IN MUZAFFAR GARH DISTRICT OF PUNJAB (PAKISTAN)

H. A. Bachaya, M. A. Raza*, S. Murtaza** and I. U. R. Akbar***

Livestock & Dairy Development Department, Punjab, Muzaffargarh
*Department of Animal Sciences, University Agricultural College D.G. Khan Campus, University of Agriculture Faisalabad **Department of Clinical Sciences, BZU, Multan ***Disease Diagnostic Laboratory, Muzaffar Garh
Corresponding author e-mail: asifrazarana@yahoo.com, asif-raza@icdd.uni-kassel.de

ABSTRACT

The present study was carried out to determine the quarter-wise and animal-wise prevalence of sub-clinical mastitis in crossbred cows in four tehsils i.e., Muzaffar Garh, Kot Addu, Ali pur and Jatoi of District Muzaffar Garh of Punjab. Milk samples were collected from apparently mastitis free 2000 quarters of 500 crossbred cows. The samples were subjected to Surf Field Mastitis Test (SFMT). The overall quarter-wise prevalence was 35.25% while animal-wise prevalence was 36%. The maximum quarter-wise prevalence was found to be 9% in tehsil Jatoi followed by 7, 8 and 7.8% in the tehsils Muzaffar Garh, Kot Addu, and Ali pur, respectively. While the maximum animal-wise prevalence was 60% in tehsil Jatoi followed by 48, 41.6 and 30.4% in the tehsils Muzaffar Garh, Kot Addu and Ali pur, respectively.

Key words: crossbred cows, sub-clinical mastitis, Surf Field Mastitis Test

INTRODUCTION

Bovine mastitis is one of the most problematic diseases and continues to have major economic impact on the dairy industry throughout the world (Dodd, 1983). It is a global problem, characterized by physical, chemical and microbiological changes in the milk and pathological changes in the glandular tissue of the udder. Mastitis is recognized as the most important and costly disease of dairy animals (Lightner et al., 1988; Ali et al., 1989). This disease also poses the risk for the transmission of major zoonotic diseases like tuberculosis, brucellosis, leptospirosis and streptococcal sore throat to human beings (Radostits et al., 2000).

In the sub-clinical mastitis all the five cardinal signs of udder inflammation (redness, heat, swelling, pain and loss of milk production) are present, while the sub-clinical form is bereft of any manifestation of inflammation. In USA, sub-clinical mastitis is responsible for 60-70% of total economic losses associated with all mastitic infections (Merrill and Galton, 1989). Mastitis represents a serious problem to be considered due to the economic losses for which it is responsible (Ahmad, 2001). Field Surveys of major livestock diseases in Pakistan have indicated that mastitis is one of the most important health hazards in the country (Cady et al., 1983). The losses due to mastitis might be higher in Pakistan because the mastitis prevention practices like teat dipping and dry period antibiotic therapy are not in practice (Arshad, 1999).

Since there is no gross swelling of quarters or abnormality of milk, sub-clinical mastitis is recognized by laboratory examination of milk or animal-side tests.

The common farmers are not so much familiar with these techniques. So the present study was conducted to determine the quarter-wise and animal-wise prevalence of sub-clinical mastitis in crossbred cows in four tehsils i.e., (Muzaffar garh, Kot Addu, Alipur and Jatoi) of Muzaffar garh district of Punjab, Pakistan, using an easy animal-side test viz., Surf Field Mastitis Test (SFMT). SFMT has already been used by different scientists in their studies like Bachaya et al., 2005; Khan and Muhammad, 2005; Sharif and Ahmad, 2007; Ali et al., 2010; Muhammad et al., 2010, for the prevalence of sub-clinical mastitis in different species of animals.

MATERIALS AND METHODS

The study area, district Muzaffar garh is situated between two rivers mighty Indus and Chenab. According to Livestock Census 2006, the District is first in the Punjab as far as cattle population is concerned (Anonymous, 2006), so this District is called the “Land of Cattle” amongst, crossbred cows are more in population. Therefore, crossbred cows were used for this study.

Milk samples from apparently mastitis free 2000 quarters of 500 cows were collected aseptically. The samples were subjected to Surf Field Mastitis test (SFMT). The principle of the test is that when detergent is added into milk sample, it causes rupture of somatic cell and release DNA and other cell contents. DNA is acid in nature, while detergent contains alkyl-aryl-sulfonate, which is basic in nature. DNA and detergents unite to form a gel, consistency of gel depends upon the number of somatic cells. More cells more thick gel and
vice versa. For this purpose, three percent surf solution (pH = 10.3) was prepared by adding three grams of commonly used detergent powder (Surf Excell®, Lever Brothers, Pakistan) in 100 mL of water. Quarter milk samples and surf solution were then mixed in equal quantities in petri-dishes separately for each quarter. The change in consistency of milk indicated mastitis, while no change in consistency of milk indicated healthy samples. The mastitis was graded into four further categories based on the severity of disease from lower to higher intensity as, + = moderate, + + = severe, + + + = more severe, + + + + = very severe (Muhammad et al., 1995; Fazal-ur-Rehman, 1995). The prevalence was calculated as described by Thrusfield (1986) and percent result was calculated.

RESULTS AND DISCUSSION

Quarter-wise and animal-wise prevalence of sub-clinical mastitis in crossbred cows in Muzaffar garh District of Punjab using SFMT has been shown in the Table-1 and Table-2, respectively. The quarter-wise prevalence was found to be 35.25 percent while animal-wise prevalence was 45 percent. A previous study has shown quarter-wise and animal-wise prevalence of mastitis as 64 percent and 30.5 percent, respectively in buffaloes (Fazal-ur-Rehman, 1995). While herd-mate animals had shown higher prevalence of sub-clinical mastitis in buffaloes (75 percent) and individually managed animal as 44.44 percent.

Said and Malek (1968) reported a prevalence of 38.07 percent in buffaloes on the basis of White Side test and California Mastitis Test. Hashmi and Munir (1981) used cultural examination and reported a figure of 44.9 percent for buffaloes. Rehman et al. (1983) reported a prevalence of 59.2 percent and 36.8 percent of sub-clinical mastitis in cows and buffaloes, respectively on the basis of Direct, Indirect and cultural examination. Hussain et al. (1984) observed the prevalence of 33 percent in cows and 8 percent in buffaloes on the basis of results of White Side test. Shah (1987) used Ciba-Geigy Mastitis Test and found that 34.48 percent buffaloes suffered from sub-clinical mastitis.

Anwar and Chaudhry (1983) have reported a prevalence of 47.5 percent in buffaloes after using Strip Cup test, pH test and White Side test. Bachaya et al. (2005) also reported that overall quarter-wise prevalence was 44.1% while animal-wise prevalence was 44% in cows on the basis of Surf Field Mastitis Test. Khan and Muhammad (2005) observed the overall prevalence of sub-clinical mastitis 27% in buffaloes and 36% in crossbred cows by using Surf Field Mastitis Test and microbiological examination of milk.

The difference in prevalence of sub-clinical mastitis observed in the present and previous studies may be due to differences in management practices, methods of detection, breeds of the animals, immune response of animals and climatic conditions. Extreme weather favours the problem and creates stress to the body, hence immunity decreases, leading to increased sub-clinical incidence associated with contagious and environmental mastitogens. Various previous studies (Hoar and Roberts, 1972; Prost, 1984; Faull et al., 1985) indicated that good management conditions reduce the incidence of mastitis to a great extent. Nickerson (1990) reported that proper milking procedure is important to reduce the incidence of mastitis. The studied factors were determined as risk factors affecting mastitis as breed (Bendixen et al., 1988), season, age (Hultgren 2002), management, environment (McDougall, 2003) and hygiene (Ward et al., 2002).

Table I: Quarter-wise prevalence of sub-clinical mastitis in crossbred cows in 4 tehsils of District Muzaffar Garh

<table>
<thead>
<tr>
<th>Area</th>
<th>Total quarters tested</th>
<th>Affected quarters No.</th>
<th>One positive quarters %age</th>
<th>Two positive quarters No. %age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muzaffar garh</td>
<td>500</td>
<td>180 36</td>
<td>145 29</td>
<td>35 7</td>
</tr>
<tr>
<td>Kot Addu</td>
<td>500</td>
<td>150 30</td>
<td>110 22</td>
<td>40 8</td>
</tr>
<tr>
<td>Alipur</td>
<td>500</td>
<td>135 27</td>
<td>96 19.2</td>
<td>39 7.8</td>
</tr>
<tr>
<td>Jatoi</td>
<td>500</td>
<td>240 48</td>
<td>195 39</td>
<td>45 9</td>
</tr>
</tbody>
</table>

Over all affected quarters = 35.25%

Table II: Animal-wise prevalence of sub-clinical mastitis in crossbred cows in 4 tehsils of District Muzaffar Garh

<table>
<thead>
<tr>
<th>Area</th>
<th>Animal tested</th>
<th>Affected animals No.</th>
<th>Affected %age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muzaffar garh</td>
<td>125</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>Kot Addu</td>
<td>125</td>
<td>52</td>
<td>41.6</td>
</tr>
<tr>
<td>Alipur</td>
<td>125</td>
<td>38</td>
<td>30.4</td>
</tr>
<tr>
<td>Jatoi</td>
<td>125</td>
<td>75</td>
<td>60</td>
</tr>
</tbody>
</table>

Over all affected animals = 45%

The milk samples from udder quarters affected with sub-clinical mastitis showed flocules or gel formation when subjected to SFMT. In a previous study, quarter-wise milk samples from apparently normal healthy animals were examined by Surf Field Mastitis Test to determine the prevalence of mastitis (Muhammad et al., 1995) Present study focused on determining the percentage of sub-clinically affected animals. Gel formation was divided into four categories i.e. + = moderate, + + = severe, + + + = more severe, + + + + = very severe. Only first two conditions were present, while other two were absent (Table 1).

In the sub-clinical mastitis, the most important factor affecting somatic cell count in milk is mammary
gland infection (Eberhart et al., 1979; Reneau, 1986). Inflammation of mammary glands increases the number of somatic cells in milk. When milk from sub-clinically mastitic quarters is mixed with anionic detergent solutions such as CMT or SFMT reagent, a chemical reaction causes the gel formation (Schalm et al., 1971). Ideally milk from all four quarters should be tested separately. Mastitic milk is unwholesome for human consumption due to the presence of bacteria and their toxins, as well as high number of white blood cells or somatic cells (Barlett et al., 1990; Harmon, 1994).

There is high prevalence of mastitis in dairy cows in our field conditions, which ultimately reflects the bad quality of milk available to the consumers. This is due to the following reasons. Regular screening tests for sub-clinical mastitis are not practiced in the field by the farmers. As mastitis is a management problem and mastitis prevention practices like dry cow therapy, pre and post-milking teat dip are not practiced at most of the milking sheds. Most common pathogens of mastitis are contagious, at the time of milking these pathogens are exposed to non-mastitic animals from milkers’ hands, because no preference of milking non-mastitic animals first is done. Milking procedure in our conditions is accompanied with unhygienic conditions and the teats are exposed to injury with inverted thumb method of milking. There is close contact between healthy and diseased animals in common grazing and wallowing places. As weaning is not practiced so un-weaned calves often cause injury to the udder and create a focus for infection, the calves cause injury, because of biting, pulling and hitting the udder. While open grazing in the field the large, pendulous and hanging udders are often exposed to injury and infection develops.

Recommendations: Teats should be clean and washed with an effective germicidal chemical to avoid the spread of Mastitis. All the quarters of cows should be treated at drying off with antibiotics. Proper milking procedure should be practiced. Mastitic animals should be kept and milked separately. After milking the animal should not be allowed to sit immediately, because after milking the teat sphincter remain open for some time and if animal sits at that time there are maximum chances of infection due to contact of teat with un-hygienic places. Regular screening of mastitis should be done. Chronically infected animals, who do not respond to the treatments, should be culled out from the herds. The cases of mastitis can be reduced to an appreciable extent and the production can be increased by adopting following management measures on priority basis, i. Preventing the calf to cause any injury on teat / udder, ii. Full hand milking should be practiced, iii. Keeping the animals on wet and dirty floors should be discouraged, iv. Pacca floor must be even and properly bedded, v. Non-infected animals should be milked ahead of infected ones vi. Using a simple screening test like SFMT, farmers should test the dairy animals before purchasing, if positive, avoid buying such animals.

REFERENCES

field mastitis test for the detection of sub-
clinical mastitis in buffaloes and cattle, II)
Antibiotic susceptibility of pathogens. MSc
Thesis, Deptt: Vet. Clinical Medicine and
Surgery, Univ. Agri. Faisalabad, Pakistan.
Harmon, R. J. (1994). Physiology of mastitis and factors
affecting somatic cell counts. J. Dairy Sci., 77:
2103-2112.
Hoare, R. J. T. and E. A. Roberts (1972). Investigation in
mastitis problem herds. Effect of herd Size, shed
type, hygiene and management practices.
Hultgren, J. (2002). Foot / leg and udder health in relation
to housing changes in Swedish dairy herds.
mastitis in cows and buffaloes, identification
and drug sensitivity of causative organisms.
comparative prevalence of mastitis in Buffaloes
Lightner, J. K., G. Y. Miller, W. D. Hueston and C. R.
Dorn (1988). Estimation of the costs of mastitis,
using National Animal Health monitoring system and milk somatic cells count data. J.
with the incidence of clinical mastitis over the
non-lactation period and bulk tank somatic cell
count during the subsequent lactation. New
control. In: Milk Quality: A Pro-Dairy
Management Focus Workshop for Farm
Managers, Cornell University, New York, USA.
Muhammad, G., M. Athar, A. Shakoor, M. Z. Khan,
field mastitis test: An expensive new tool for
evaluation of wholesomeness of fresh milk.
Muhammad G, A. Naureen, M. N. Asi, M. Saqib, Fazal-
ur-Rehman (2010).Evaluation of a 3% surf
solution (surf field mastitis test) for the
diagnosis of sub-clinical bovine and bubaline
Nickerson, S. C. (1990). Production of quality milk and
control of mastitis in Mexico. Diary Research
Report. Hill Farm Research Station Route-1,
Box 10. Homer, LA 71040, USA.
on the occurrence of bovine mastitis and the
implementation of control measures. Polskie
Radostits, O. M., D. C. Blood, C. C. Gay, K. W. Hinchiff
London, U.K.
Incidence and etiology of subclinical mastitis in
cows and buffaloes in Punjab. J. Res. Punjab
Reneau, J. K. (1986). Effective use of dairy herd
improvement somatic cell counts in mastitis
Said, A. H. and A. S. Abd-el-Malik (1968). Diagnosis,
incidence and treatment of subclinical mastitis in
dairy buffaloes. J. Vet. Sci. (United Arab
Republic), 5: 171-181.
Mastitis. Lee and Febiger, Philadelphia, USA.
Staphylococcus aureus and its treatment with
cloxacillin, rifampicin and their combination.
of mastitis in buffaloes in district Faisalabad
(Pakistan), J. Agric. Soc. Sci. 3: 34–36.
Thrusfield, M. (1986). Veterinary Epidemiology. In:
Describing Disease Occurance, 1st edition, pp:
Ward, W. R.; Hughes, J. W.; Faull, W. B.; Cripps, P. J.;
Observational study of temperature, moisture,
ph and bacteria in straw bedding, and faecal
consistency, cleanliness and mastitis in cows in