NEW COLLECTION OF CONOHYUSSINDIENSIS, A MIDDLE MIOCENE SUID, FROM CHAKWAL, PAKISTAN.

S. Aslam, A. M. Khan and M. Akhtar

Department of Zoology, University of the Punjab, Lahore, 54590, Pakistan
Corresponding Author’s Email: majid.zool@pu.edu.pk

ABSTRACT

New fossils of Conohyussindiensis have been collected from Middle Miocene localities of Lawa, Kallar Kahar and Dhok Bun Ameer Khatoon in district Chakwal. Conohyussindiensis is very common suid in the Chinji type area of Pakistan. Its biostratigraphic range varies between Kamlial type areas to the base of Nagri Formation. The probable time range of C. sindiensis is from 15 to 11 million years. The sample comprises isolated molars. The morphometric description of these specimens will add new information regarding molar morphology as well as the biogeographic distribution of Conohyussindiensis.

Keywords: Lower Siwaliks; Chinji; Lawa; Dhok Bun Ameer Khatoon; Suidae; Mammalia.

INTRODUCTION

Lower Siwaliks of Pakistan yields earliest suid fauna of the world. Suid fossils from Kamlial Formation are oldest but are poorly known (Pickford, 1988). Three genera of suids i.e., Listriodon, Conohyus and Hyotherium are known from Lower Siwaliks of Pakistan probably ranging in age from about 12.5Ma to about 10Ma. Listriodonpentapotamiae and Conohyussindiensis have broad biostratigraphic range in these zones but Hyotheriumpilgrimi is very rare and has restricted biostratigraphic range. Asomewhat larger species of Conohyusknown as C. indicus appears late in Chinji zone and it has been recorded from the same strata as Hipparion. It probably ranges about 11Ma to 9Ma (Pickford, 1988). C.sindiensis is common at all levels in the Chinji zone. Probable time range of C.sindiensis is from 15Ma to 11Ma (Pickford, 1988). Colbert (1933) described in details the skull and mandible of Conohyussindiensis. Cheek teeth were described by Pilgrim (1926) Lydekker (1884) and Colbert(1935). The closest relative of Conohyus is Hyotherium, a typical Miocene pig of Europe. Conohyus has a direct inheritance from Palaeochoerus (Colbert, 1933).

Geographic and Stratigraphic contextof Study Area: Dhok Bun AmeerKhatooncontains continuous geological record ranging approximately 18.5Ma- 4.5Ma (Johnsonet al. 1982). DBAK consists of five lithostatigraphic units i.e., Kamlial, Chinji, Nagri, DhokPathan and Soan formation (Figure-1). Among these Chinji, Nagri and DhokPathan are well exposed for fossil collection (Cheema, 2003; Khan et al. 2008; Khan et al. 2011). Site locality DBAK is a village in district Chakwal surrounding the Miocene deposits. Geographical coordinates of DBAK are 32°47' 26.4'', 72°55 35.7 E. The fossiliferous section consists of shale, siltstone and sandstone (Khan et al. 2008). Its fossiliferous section consists of shale, siltstone and sandstones.

The site locality lava is 11km southeast of lava village with geological coordinates of 32°62’ N, 71°98’ E. fossiliferous deposits consists of sandstone and reddish shale (Khanet al. 2011). Kallar Kahar is located 25km southwest of Chakwal with geological coordinates of 32°47’N, 72°42’ E.
METHODOLOGY

Various field trips were carried out to the site localities of Dhok Bun Ameer Khatoon, Lawa and Kallar Kahar for fossil collection. Primary mean of collection was surface collection of the fossil remains. The collected material was carried to the laboratory and was prepared for study. The specimens were catalogued i.e., yearly catalogue and serial catalogue. Measurements of the specimens were taken in mm by Vernier calipers. Tooth length and breadth are measured at occlusal level. Photographs were taken with the help of digital camera and slides were prepared by computer. The fossils are housed in the Paleontology lab of the Department of Zoology, University of the Punjab, Lahore, Pakistan.

Abbreviations: PUPC – Punjab University Palaeontological Collection; M1 – first lower molar; L – length; W – width; my – million years ago; mm – millimeters.

RESULTS AND DISCUSSION

Systematic Palaeontology
Order: Artiodactyla Owen(1848)
Suborder: Suiformes Jaeckel, (1911)
Superfamily: Suoidea (Gray, 1821) Cope, (1887)
Family: Suidae Gray(1821)
Sub Family: Tetraconodontinae
Genus: Conohyus Pilgrim (1925)

Type species: Conohyussimmorensis Lartet, (1851)

Included species: Sanitheriumschlagintweitii, Hyotheriumsindienese, Hyotheriumperimense, Palaeochoerusindienise, Hyotheriumchinjenis, Conohyuschinjenis, Propotamochoerusuliginosus, Propotamochoerussalinus, Dicooryphochoerushaydeni, Adaetotheriumincognitum.

Generic Diagnosis: Small tetraconodents with P3-4 only marginally larger than M1; molars simple with poorly developed labial cingula; M3 simple; molar enamel thick and enamel on P3-4 wrinkled; symphysis very curved so that canines are steeply inserted the jaw; no or only short diastema; P 1-2 marginally sectorial; female canines pre-molariform (Pickford, 1988).

Conohyussindienise (Lydekker, 1884)

Specific Diagnosis: A small species of Conohyus in which the upper molar row is less than 60mm long(Pickford, 1988).

Holotype: GSI B102. It maxilla fragment with M1-2.
LYDEKKER(1884).

Horizon: Lower Siwaliks of the Sind, Pakistan, probably equivalent to the Chinji type area on faunal grounds.

Locality: Lawa, KallarKahar and Dhok Bun AmeerKhatoon.

Specimens observed: PUPC 08/93, an isolated lower first molar, PUPC 94/7, an isolated lower third molar, PUPC 94/1, an isolated lower third molar, PUPC 96/64, an isolated lower third molar, PUPC 99/51, mandible having M2-3.

Description: M1 consists of two principal cusps which are lophodont. Cingulum forms moderate flare around the tooth. Enamel is shiny and dark in color.

Anterior half of M2 is broken. The hypoconid andentoconid are visible. Hypoconid is broader than entoconid. Median accessory cusp is visible. Cingulum forms flare on posterior side.
M3 is simple bunodont. It mainly consists of four low-crowned principal cusps i.e., protoconid, paraconid, enatoconid and hypoconid. Cusps are blunt indicating their omnivorous habit. Sagittal valley between principal cusps is well spaced. Anteriorly cingulum forms moderate flare and anterior accessory cusps. Median accessory cusps are also present. Posteriorly cingulum expands to form relatively broader talonid and posterior accessory cusps. Remnants of cingulum forms basal pillar at the end of median valley both lingually and labially. Enamel is thin and shiny (Table-1, Figure 2 and 3).

Comparison and Discussion: All lower third molars of studied samples are simple molars like those of Pickford (1979). The molars have four main cusps along with posterior talonid. Moderate flare of cingulum is present around the tooth. Moderate accessory cusps are present in all specimens. Enamel of *Conohyus* is comparatively thicker as compared to other suids.

Conohyus is well known genus in Lower Siwaliks of Pakistan and all over the world but it still put forward some difficulties to identify some isolated molars of this genus. Pilgrim (1926) put *Conohyussindiensis* specimens into 5 species, including two of *Propotamochoerus* and one of *Dicrotyphochoerus*. The species *Hyotheriumperimense* is most probable synonym of *C. sindiensis*, however in past it is being assigned to *Hyotherium* and *Palaeochoerus*. He demonstrated that the genus *Conohyus* is distinguished by the enlargement of 2nd and 3rd premolars which its distinguished characters are setting apart the Siwalik form from its European relatives, *Hyotherium*. Colbert (1935) assigned specimens of *C. sindiensis* into three different genera, *Conohyus*, *Dicrotyphochoerus* and *Palaeochoerus*. Pickford (1979) assigned *Adaentheriummicognitum* Lewis as synonym of *C. sindiensis*. According to Pickford(1988) only molars of *Hyotherium* (Sensusoemmeringi) approach those of *Conohyus* in enamel thickness and they should not be confused with those of *Propotamochoerus* having thinner enamel. *Tetraconodon* is distinguished from *Conohyus* by the still greater enlargement of the lower premolars. *Sivachoerus* differs from *Conohyus* by less degree of wrinkling on the premolars and by elongation and complication of M3.

Pilgrim (1926) described three species of genus *Conohyus*, i.e., *Conohyussindiensis*, *Conohyuschinjensiensis* and *Conohyussindicis*. *Conohyussindiensis* differs from *C. chinjensiensis* having relatively broader M3 and less complex talon. *Conohyussindicis* possess stouter mandible relatively larger lower premolar. *Conohyussindicis* differs from *C. indicus* by superior dimensions of premolars of the later (Pickford, 2001). Van der Made (1999) suggested *Conohyussindicis* as synonym of *Conohyussindiensis* without providing any evidence but later on he agreed that *Conohyussindicis* and *C. sindiensis* are two distinct species and belong to genus *Sivachoerus*. It was Pickford (2001), who conclude that *C. indicus* and *C. sindiensis* belong to genus *Conohyusnot* *Sivachoerus*.

In Siwalik tetraconodontinae is represented by 4 genera, *Conohyus*, *Lophochoerus*, *Tetraconodon* and *Sivachoerus*(Pickford, 1988).

In Europe, tetraconodontinae is represented by two genera, *Conohyus* and *Parachleuastochoerus*. *Conohyus* lineage starts with *C. simorrensis* (van der Made, 1990, 1999). *Conohyus* differs from *Parachleuastochoerus*in morphology of premolars (Pickford and Gupta, 2001).

C. thailandicus junior synonym of *C. indicus* (Pickford and Gupta 2001) which was erected by Ducrog *et al.* (1997) on the basis of several specimens from northern Thailand.

Table 1: Comparative measurements (in mm) of cheek teeth referred to *Conohyussindiensis*

<table>
<thead>
<tr>
<th>SPECIMENS</th>
<th>POSITION</th>
<th>LENGTH (mm)</th>
<th>WIDTH (mm)</th>
<th>HEIGHT (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUPC 94/7</td>
<td>M3</td>
<td>24.5</td>
<td>14.0</td>
<td>10.0</td>
</tr>
<tr>
<td>PUPC 94/1</td>
<td>M3</td>
<td>27.9</td>
<td>14.8</td>
<td>11.0</td>
</tr>
<tr>
<td>PUPC 94/64</td>
<td>M3</td>
<td>21.1</td>
<td>12.1</td>
<td>10.5</td>
</tr>
<tr>
<td>PUPC 08/93</td>
<td>M1</td>
<td>14.2</td>
<td>10.3</td>
<td>8.4</td>
</tr>
<tr>
<td>PUPC 99/51</td>
<td>M1</td>
<td>20.0</td>
<td>9.3</td>
<td>6.45</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>11.7</td>
<td>9.1</td>
<td>5.3</td>
</tr>
<tr>
<td>*K41/836</td>
<td>M3</td>
<td>21.5</td>
<td>12.2</td>
<td>-</td>
</tr>
<tr>
<td>*K13/820</td>
<td>M3</td>
<td>24.9</td>
<td>13.6</td>
<td>-</td>
</tr>
<tr>
<td>*K41/829</td>
<td>M3</td>
<td>15.0</td>
<td>10.6</td>
<td>-</td>
</tr>
</tbody>
</table>

K taken from Pickford, 1988.
Fig 2. Scatter diagrams of cheek teeth of *Conohyussindiensis*. Comparative measurements have been taken from Pickford, 1988.

Fig 3. *Conohyussindiensis*. 1. PUPC 08/93, an isolated lower first molar; 2. PUPC 99/51, mandible having M2,3; 3. PUPC 94/64, an isolated lower third molar; 4. PUPC 94/1, an isolated lower third molar; 5. PUPC 94/7, an isolated lower third molar. a. occlusal view b. buccal view c. lingual view. Scale bar 10mm.
Conclusion: Specimens described here morphometrically differ from other specimens of the genus Conohyus.

Acknowledgements: I am thankful to my lab fellow Adeeb and Amtur Rafeh for photography and making scattered diagrams.

REFERENCES
Cheema, I.U.(2003). Phylogeny and evolution of Neogene murine rodents from the Potwar Plateau of Pakistan and Azad Kashmir with special emphasis on zoogeographic diversification and stratigraphic implications. PhD, University of the Punjab, Lahore, Pakistan