THE STUDY OF HORTICULTURAL ATTRIBUTES OF SELECTED MEDICINAL PLANTS OF KHANPUR VALLEY IN THE SUB HIMALAYAN MOUNTAINS OF PAKISTAN

S. M. Khan1, 2, N. Amin1 and H. Ahmad3

1Department of Horticulture, The University of Agriculture Peshawar, Pakistan.
2Department of Agriculture (Horticulture) University of Haripur, Pakistan.
3Department of Genetics, Hazara University, Mansehra Pakistan.
Corresponding Author’s Email: shahmasaudkhan@gmail.com.

ABSTRACT

Data was recorded on plant height, leaves plant−1, stem diameter, leaf dry weight, plants meter−2, yield plant−1, yield meter−2 and yield hectare−1 for three selected medicinal plants of Khanpur valley (Adhatodaivasica, Calotropisprocera and Recinuscommunis) at their natural habitats at four selected sites and two seasons during 2013. Significant effects were observed at different seasons and sites upon various horticultural attributes of all three medicinal plants. Adhatodavasica showed significantly higher values for plants meter−2 (0.18) at Mang during summer, yield meter−2 (10.28g) at Mang during summer and yield hectare (102.76kg) at Mang during summer. Recinuscommunis revealed higher values for yield hectare (248.82kg) at Mang during summer followed by Dam site during summer (220.55kg). Calotropisprocera revealed higher values for yield hectare (530.02kg) at Mang during summer followed by Dabola site during summer (367.67kg). It was concluded that medicinal plants under study gave maximum yield during summer (last week of July) showed maximum yield at Mang site. Therefore, medicinal plants may be collected during last week of July for best yield.

Key words: Horticultural attributes, medicinal plants, Khanpur valley.

INTRODUCTION

Since ancient times, people have collected flora and fauna for their existence and wellbeing. Principal examples are herbs, mushrooms, fruits, edible nuts, spices, fodder, gums, fibers used in the making of shelters, food, feed, cosmetics, cloths, utensils, medicines and social uses. Currently, worldwide, especially in developing countries, hundreds of millions of people, depend for a major part of their daily needs and economic benefits, on plant and animal products (Walter, 2001).

Quantitative information on the morphological and yield performance of medicinal herbs in nursery (Bargali, 1997; Karikanthimath et al. 1997) as well as in natural habitats (Chauhan et al. 1997) are plenty in literature. However, when we look at the flora of Himalayan Mountains the recorded information on the medicinal plants is too little to be considered. Rather the quantitative information on growth performance of medicinal flora of Pakistan has gained very little attention. Quantitative analysis in terms of horticultural attributes can contribute towards understanding of the actual yield of the medicinally important part of plant and its sustainable collection without damaging the invaluable flora, indigenous to the valleys of Pakistan. The current study was undertaken to gauge the growth performance of three most important medicinal plants of Khanpur valley with the following objectives:

1. To determine the annual yield for sustainable harvest of the selected medicinal plant species.
2. To find out the comparative suitability of seasons and sites for the growth and yield of three selected medicinal plants.

MATERIALS AND METHODS

The experiment was conducted during 2013. Three medicinal shrubs were selected for horticultural studies at their natural habitat. Through quadrat transact method, three transacts (replications) were taken and in every transact data on horticultural attributes was recorded on the plants at their natural habitat at all the four sites:

Dam Site: It is situated in the center of the valley with a beautiful lake (Khanpur Dam) which is located at longitude 725552.38E and latitude 334845.87N with an altitude of 1940 feet.

Dabola Site: This site of Khanpur valley is located at longitude 730433.36E and latitude 334950.73N with an altitude of 3940 feet.

Jabri Site: It is situated at the north-east of the Khanpur valley. Jabri is located at longitude 731008.98E and latitude 335411.69N with an altitude of 3120 feet.
Mang Site: It is situated at north-west of the Khanpur valley. Mang is located at longitude 72°54'49.24E and latitude 33°54'21.12N with an altitude of 1885 feet.

The horticultural parameters were measured and data were collected during summer (April-September) and winter (October-March) at different specified periods as below:
1. *Adhatodavasica* Last week of July and last week of December.
2. *Calotropisprocera* Last week of July and last week of December.
3. *Recenuscommunis* Last week of July and last week of December.

Study Parameters: The horticultural attributes were studied with the help of the following parameters.
1. **Plant height (cm)**
 - Plant height of the six selected medicinal species was measured with a standard ruler in cm. The average height of ten randomly selected plants was recorded, from each site in both seasons.
2. **Leaf dry weight (g)**
 - Leaves were excised with the help of cutter, dried with electric drier and weighed on electronic balance in grams. Leaf weight of the selected medicinal plants was calculated by taking the average of ten randomly selected leaves in the available plants, for all sites in both seasons.
3. **Number of leaves plant⁻¹**
 - Number of leaves per plant was calculated by taking the average of number of leaves of ten randomly selected plants, in four sites in both seasons.
4. **Stem diameter (cm)**
 - Stem diameter was measured with the help of standard ruler. Average stem diameter of ten randomly selected plants was recorded for all sites and both seasons.
5. **Number of plants meter⁻²**
 - Total number of individuals of a species in a quadrature, were counted in all the quadrates and its average was taken as number of plants per quadrature. Plants per quadrature were then converted to plants meter⁻².
6. **Yield plant⁻¹** (Total leaves dry weight) (g).
 - Ten randomly selected plants of each medicinal species were taken and the single leaf dry weight of each plant was multiplied with the total number of leaves per plant and was taken as yield per plant.
7. **Yield meter⁻²** (g).
 - This was calculated with the help of the following formula:

 \[
 \text{Yield per meter}^2 = \text{number of plants per meter}^2 \times \text{yield per plant}
 \]
8. **Yield hectare⁻¹** (kg)
 - This was calculated with the help of the following formula:

 \[
 \text{Yield per hectare} = \text{yield per meter}^2 \times 10000/1000.
 \]

Statistical Analysis: The data on horticultural parameters were analyzed by using the statistical software "Statistics-8.1", using linear model and general ANOVA with specific AOV model statement. The mean data, for factors and their interactions, were compared by using LSD at 0.05.

RESULTS

Results on all parameters for *Adhatodavasica*, *Recinuscommunis* and *Calotropisprocera* are shown in table-1, table-2 and table-3 respectively.

Table-1 Effect of Different Seasons and Sites on Horticultural Parameters of *Adhatodavasica*.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Plant Height (cm)</th>
<th>Leaves Plant⁻¹</th>
<th>Stem Diameter (cm)</th>
<th>Leaf Dry Weight (g)</th>
<th>Plants Meter⁻²</th>
<th>Yield Plant⁻¹ (g)</th>
<th>Yield Meter⁻² (g)</th>
<th>Yield Ha⁻¹ (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>130.82a</td>
<td>238.75a</td>
<td>3.81</td>
<td>0.2183</td>
<td>0.13</td>
<td>51.90a</td>
<td>6.86a</td>
<td>68.58a</td>
</tr>
<tr>
<td>Winter</td>
<td>92.96b</td>
<td>170.15b</td>
<td>3.84</td>
<td>0.2058</td>
<td>0.12</td>
<td>34.80b</td>
<td>4.19b</td>
<td>41.92b</td>
</tr>
<tr>
<td>Significance level Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td>116.75</td>
<td>205.00</td>
<td>3.87</td>
<td>0.2233</td>
<td>0.14b</td>
<td>45.50</td>
<td>6.52b</td>
<td>65.22b</td>
</tr>
<tr>
<td>Dabola</td>
<td>106.45</td>
<td>197.00</td>
<td>3.75</td>
<td>0.2150</td>
<td>0.11c</td>
<td>42.13</td>
<td>4.64c</td>
<td>46.38c</td>
</tr>
<tr>
<td>Jabri</td>
<td>103.10</td>
<td>188.43</td>
<td>3.83</td>
<td>0.2067</td>
<td>0.07d</td>
<td>39.62</td>
<td>2.84d</td>
<td>28.41d</td>
</tr>
<tr>
<td>Mang</td>
<td>121.25</td>
<td>227.63</td>
<td>3.85</td>
<td>0.2033</td>
<td>0.17a</td>
<td>46.12</td>
<td>8.10a</td>
<td>80.98a</td>
</tr>
<tr>
<td>LSD at α 0.05 Interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasons*Sites</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>1.3815</td>
<td>13.822</td>
<td></td>
</tr>
</tbody>
</table>

Means followed by similar letter(s) in column do not differ significantly.

ns = Non-Significant.
* = Significant at 5 % level of probability.
Table-2 Effect of Different Seasons and Sites on Horticultural Parameters of *Calotropis procera*.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Plant Height (cm)</th>
<th>Leaves Plant⁻¹</th>
<th>Stem Diameter (cm)</th>
<th>Leaf Dry Weight (g)</th>
<th>Plants Meter⁻²</th>
<th>Yield Plant⁻¹ (g)</th>
<th>Yield Meter⁻² (g)</th>
<th>Yield Ha⁻¹ (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>271.67a</td>
<td>308.00a</td>
<td>3.89</td>
<td>2.12b</td>
<td>0.03</td>
<td>616.93a</td>
<td>18.35a</td>
<td>183.55a</td>
</tr>
<tr>
<td>Winter</td>
<td>240.93b</td>
<td>202.17b</td>
<td>3.88</td>
<td>2.39a</td>
<td>0.03</td>
<td>477.70b</td>
<td>13.20b</td>
<td>132.04b</td>
</tr>
<tr>
<td>LSD at α 0.05</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Means followed by similar letter(s) in column do not differ significantly.
ns = Non-Significant.
* = Significant at 5 % level of probability.

Table-3 Effect of Different Seasons and Sites on Horticultural Parameters of *Adhatodavasica*.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Plant Height (cm)</th>
<th>Leaves Plant⁻¹</th>
<th>Stem Diameter (cm)</th>
<th>Leaf Dry Weight (g)</th>
<th>Plants Meter⁻²</th>
<th>Yield Plant⁻¹ (g)</th>
<th>Yield Meter⁻² (g)</th>
<th>Yield Ha⁻¹ (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>98.27a</td>
<td>102.17a</td>
<td>1.93b</td>
<td>0.1776b</td>
<td>0.90a</td>
<td>42.73a</td>
<td>38.77a</td>
<td>387.65a</td>
</tr>
<tr>
<td>Winter</td>
<td>57.73b</td>
<td>69.92b</td>
<td>2.39a</td>
<td>0.2115a</td>
<td>0.63b</td>
<td>34.42b</td>
<td>21.77b</td>
<td>217.71b</td>
</tr>
<tr>
<td>LSD at α 0.05</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Means followed by similar letter(s) in column do not differ significantly.
ns = Non-Significant.
* = Significant at 5 % level of probability.

1. Plant Height (cm): The results revealed that the effect of seasons on plant height of *Adhatodavasica* was significant while the effect of sites and that of their interactions was non-significant. Maximum plant height was observed at Dam site (246.83 cm) while minimum at Jabri site (220.17 cm).

 Plant height of *Calotropis procera* was significantly higher at summer (271.67 cm) and lower at winter (240.93 cm) while maximum plant height was observed at Dam site (284.67 cm) while least of it was found at Jabri site (193.67 cm). *Calotropis procera* was observed with maximum plant height at Dam site (193.67 cm) while minimum at Jabri site (99.00 cm).

2. Number of leaves plant⁻¹: The findings revealed that the impact of seasons on number of leaves plant⁻¹ of *Adhatodavasica* was significantly higher at summer (238.75) while minimum at winter (170.15). Similarly, *Recinus communis* was observed with maximum number of leaves plant⁻¹ at summer (308.00) while minimum at winter (202.17). In case of *Calotropis procera*, the effect of seasons and sites on number of leaves plant⁻¹ was significant while the effect of their interactions was non-significant. Higher number of leaves plant⁻¹ was observed at Dam site (302.17 cm) while lower at winter (69.92 cm). Similarly maximum number of leaves plant⁻¹ was observed at Dam site (99.00 cm) while minimum of it was found at Jabri site (68.00 cm).
3. Stem Diameter (cm): The results discovered that the effect of seasons, sites and their interactions on stem diameter of *Adhatodavasica* and *Revinuscommunis* was non-significant, while *Calotropisprocera* showed significantly higher stem diameter at winter (2.39cm) than at summer (1.93cm).

4. Leaf Dry Weight (gm): The results on leaf dry weight of *Adhatodavasica* for various seasons and sites, revealed that the effect of seasons, sites and their interactions on leaf dry weight was non-significant, while *Revinuscommunis* revealed higher values for leaf dry weight at winter (2.93g) while lower at summer (2.12g). The mean data on leaf dry weight of *Calotropisprocera* for various seasons and sites reflects that maximum leaf dry weight was observed at winter (0.211g) while minimum at summer (0.177g). Similarly maximum leaf dry weight was observed at Jabri site (0.221g) while minimum of it was found at Dam site (0.173g).

5. Plants Meter\(^2\): The findings on plants meter\(^2\) of *Adhatodavasica* revealed that maximum number of plants meter\(^2\) was observed at Mang site during summer (0.1833) while minimum plants meter\(^2\) was observed at Jabri site during summer (0.0700).

Revinuscommunis was found with highest result at Dam and Mang sites (0.04) followed by Jabri site (0.03) while minimum of it was found at Dabola site (0.02). Highest number of plants meter\(^2\) for *Calotropisprocera* was observed at summer (0.90) while lowest at winter (0.63). Similarly maximum number of plants meter\(^2\) was observed at Mang site (0.91) while minimum was observed at Dam site (0.67).

6. Yield Plant\(^1\) (g):3: The results revealed that the effect of seasons on yield plant\(^1\) of *Adhatodavasica* was significant while the effect sites and that of their interactions was non-significant. Maximum yield plant\(^1\) was observed at summer (51.90g) while minimum at winter (34.80g).

The results on yield plant\(^1\) of *Revinuscommunis* for various seasons and sites, revealed that maximum yield plant\(^1\) was observed at summer (616.93g) while minimum at winter (477.70g). Similarly maximum yield plant\(^1\) was observed at Dam site (572.70g) while minimum at Jabri site (513.88g). In case of *Calotropisprocera* maximum yield plant\(^1\) was observed at summer (42.73g) while minimum at winter (34.42g). Similarly maximum number of yield plant\(^1\) was observed at Mang site (43.72g) while minimum of it was recorded at Jabri site (34.62g).

7. Yield Meter\(^2\) (g): The mean data on yield meter\(^2\) of *Adhatodavasica* discovered that the effect of seasons, sites and their interactions on yield meter\(^2\) was significant. Highest yield meter\(^2\) was found at Mang site during summer (10.277g) followed by Dam site during summer (8.570g) while minimum plants meter\(^2\) was observed at Jabri site during winter (2.327g).

Revinuscommunis was observed with significantly higher yield meter\(^2\) at summer (18.35g) while lowest at winter (13.20g). Similarly it was observed maximum at Mang site (20.32g) while minimum at Dam site (9.42g). The data recorded on *Calotropisprocera* revealed that significantly higher yield meter\(^2\) was observed at summer (38.77g) while minimum at winter (21.77g). Similarly maximum yield meter\(^2\) was observed at Mang site (40.82g) while minimum of it was recorded at Jabri site (25.52g).

8. Yield Hectare\(^4\) (kg): The results revealed that the impact of seasons, sites and their interactions on yield hectare\(^4\) of *Adhatodavasica* was significant. Maximum yield hectare\(^4\) was observed at Mang site during summer (102.76kg) followed by Dam site during summer (85.71kg) while minimum yield hectare\(^4\) was observed at Jabri site during winter (23.30kg).

The mean data on yield hectare\(^4\) of *Revinuscommunis* was observed higher at summer (183.55kg) while least at winter (132.04kg). Similarly maximum yield plant\(^1\) was observed at Mang site (203.25kg) followed by Dam site (200.72kg) while minimum of it was found at Dabola site (94.26kg). While *Calotropisprocera* showed maximum yield hectare\(^4\) at summer (387.65kg), while minimum at winter (217.71kg). Similarly maximum number of yield plant\(^1\) was observed at Mang site (408.19kg) while minimum of it was found at Jabri site (255.16kg).

DISCUSSION

It is evident from the results that the plants performed best during summer. The obvious reason for these results can be the availability of required light, temperature, water and nutrients during summer. In *Adhatodavasica*, *Revinuscommunis* and *Calotropisprocera*, which are evergreen shrubs, the summer rains and high water availability to plants might be conducive for enhanced yield and yield related parameters as mentioned by Krishnan et al. (2000). Similar results were obtained by Sher et al. (2010), who concluded that summer temperature boost growth and yield of plant species. Similarly, Liu et al. (2014), stated that plants accumulated maximum bio-chemical compounds in summer to grow at higher rate and accumulate biomass at an increased rate.

The sites comparison revealed that maximum plant height, plants meter\(^2\), yield plant, yield meter\(^2\) and yield hectare\(^4\) were recorded at Mang and Dam sites while its minimum values were observed at Jabri and Dabola sites. One possible reason for this variation could be affiliated with the topography of the site which affect the productivity directly (Lamrani et al. 2014). Krishnan...
et al. (2000) contended that it was the altitude which affected the growth and performance of plants. Mang site with low altitude and dry hot climate and rough terrain was suitable for the natural growth and abundance of Adhatodavasica, Recinuscommunis and Calotropisprocera. The lowest performance at Jabri site might be due its high altitude and low temperature during winter. In connivance with these findings, Liu et al. (2014) discovered that plant density and abundance depend on the climate and topography of sites. Mang and Dam sites with dry hot climate and hilly rough terrain might be suitable for the growth of these plants while its growth was retarded by the cool climate and high altitude of Jabri and Dabola. It is due to the fact that growth and growth related parameters are directly related to the soil and climatic conditions of the site (Kane et al. 2014). The Precipitation intensity and water availability at sites might have triggered photosynthesis and affected growth performance (Samuelson et al. 2014).

With the increased realization that some wild species are being over-exploited, a number of scientists are recommending that wild species must be brought into cultivation systems (WHO 1993; Lambert et al. 1997).

Conclusions and Recommendations: Growth geometry of medicinal plants at natural habitats, which is an important and novel aspect, was studied for the first time ever in the history of research on plant sciences in the Himalayan region of Pakistan.

It was concluded that medicinal plants under study gave maximum leaves yield during summer (last week of July). All three of the medicinal plant species A.vasica, C.procera and R.communis showed maximum yield at Mang site followed by Dam site. So, the leaves of these medicinal plants may be collected during last week of July for best yield.

The following conclusions weredrawn

1. A. vasica, C. procera and R. communis may be better harvested during the last week of July than December.
2. It was observed that summer season was the best period for collecting the leaves to get maximum yield.
3. The three woody medicinal plant species A. vasica, C. procera and R. communis were found with higher yield per hectare at Mang and Dam sites.

Following are some of the recommendations derived, after thorough consideration, from the study and based on the research findings:

- It is strongly recommended that while collecting the medicinal raw material from the indigenous flora, guidelines regarding appropriate season and site must be followed. Like the last week of July, for A. vasica, C. procera and R. communis the most appropriate time for harvesting.
- Where conservation of medicinal plant species in nature is not possible these may be brought into cultivation at nursery and be conserved.
- Sustainable harvesting is the best policy to make the requirements fulfilled without any damage to the flora of these valleys. The farmers or anyone who is interested in the collection of medicinal plants must have the knowledge of the spatio-temporal existence of these plants.

REFERENCES

