GENOMIC ANALYSIS AND EXPRESSION INVESTIGATION OF STEROLEOSIN GENE FAMILY IN ARABIDOPSIS THALIANA

U. Aziz, N. Saleem, T. Tang, and M. Zhang

Northwest Agriculture and Forestry University, College of Agronomy, Taicheng Road, 3#, Yangling, Shaanxi, China, 712100
Corresponding author’s email: zhangm@nwsuaf.edu.cn

https://doi.org/10.36899/JAPS.2020.1.0016 Published online January 02, 2020

ABSTRACT

Despite having growing evidence discussing the role of steroleosins in crop plants, their systemic analysis has not been worked extensively. Therefore, bioinformatic tools were employed to study Arabidopsis (Arabidopsis thaliana) steroleosin in comparison with reported Brassica napus and pine steroleosins. Based on molecular weight, eight steroleosins in Arabidopsis were divided into two groups, L-steroleosin (alkalescence) and H-steroleosin (acidity except At5g50770). Phylogeny analysis suggested that H-steroleosins in Arabidopsis are primitive. Moreover, phylogeny, protein alignment, motif analysis and gene structure analysis revealed that the reported steroleosins in B. napus are closely related to H-steroleosins. Similarly, Gene structure analysis revealed an insertion of 10 residues at the C-terminal of H-steroleosin which makes it relatively larger as compared to L-steroleosins. According to the Protein-protein interactions, Arabidopsis steroleosins are interrelated with genes involved in fatty acid biosynthesis and stress tolerance. Duplication studies suggest that among the steroleosin genes in Arabidopsis, segmental duplications are newly developed. Expression analysis suggests that H-steroleosins mainly express in seed tissue, while L-steroleosins diverge in two directions: expression or repression in all tissues. The upstream sequence analysis suggests that Arabidopsis steroleosins are involved in lipid metabolism and the brassinosteroid signaling pathways. The roles of steroleosins for stress responses are indicated by their induced expression under stress and abscisic acid treatments. Therefore, further investigations are required to evaluate the functions of steroleosins in plants.

Keywords: Steroleosins classification; Expression analysis; Potential functions, Evolution; Arabidopsis.

INTRODUCTION

For most eukaryotic organisms, the important source of energy is stored in the form of triacylglycerols (TAGs) and sterols (Murphy, 2012). On a per unit volume basis, the complete oxidation of TAGs provides energy twice as much as protein or carbohydrate hydrolysis do. Triacylglycerols (TAGs) in seeds are broken down during germination in order to offer energy as well as substrates for seedlings growth (Huang, 1996; Pritchard et al., 2002; Murphy, 2012). The hydrophobic TAGs are enclosed by a phospholipid monolayer to form a small globular structure known as lipid droplets (LDs, also known as lipid bodies, oil bodies, spherosomes, lipid bodies and oleosomes). The phospholipid monolayer is embedded with different kinds of proteins, termed as oleosins, caleosins and steroleosins respectively (Murphy, 2012).

Steroleosins are the minor proteins related with LDs in plants. It is also known as sterol dehydrogenases, mainly because they share significant sequence similarity with the LD-associated hydroxysteroid dehydrogenases (HSDs) in mammals (Lin et al., 2002) and a member of Arabidopsis steroleosins (At5g50600) shows in vitro activity of HSD (Baud et al., 2009). Differently from the oleosin and caleosin, steroleosin has two main structural domains: a N-terminal hydrophobic domain which is required for LD association and a C-terminal domain which exhibits NADP(H) binding sub-domain and sterol binding sub-domain. Moreover, N-terminal hydrophobic domain contains conserved proline-knob instead of the proline-knot, which is proposed to have functions associated with the LD surface (Lin et al., 2002; Chapman et al., 2012).

Isoforms of steroleosin with distinctive sterol-binding sites are present in sesame oil bodies, which are regulated by distinct sterols to carry out numerous metabolic reactions in seeds, specially related to the degradation or formation of the oil bodies (Chen et al., 1998; Pasaribu et al., 2016). Sop2 in sesame was named as steroleosin because of its structural properties i.e. N-terminal hydrophobic domain consisting of sterol binding dehydrogenase on the surface of the lipid droplets. Steroleosins have also been discovered in numerous plant species such as pine tree (Pinus massoniana) (Pasaribu et al., 2016). More recently, steroleosin B in sesame was identified as sesamin binding protein, putatively sesamin in plants is reported to have numerous functions related
to maturation of seeds and germination (Tera et al., 2019). Molecular study revealed that AtHSD1 (At5g50600 and At5g50700) is the direct target of LEAFY COTYLEDON2 (LEC2), which can bind to the promoter of AtHSD1 (Baud et al., 2009). Down-regulation of HSDs in Arabidopsis can affect the plant growth and normal development (Li et al., 2007).

Arabidopsis (Arabidopsis thaliana) is an important model organism due to its small genomic size (125 MB) and short life span (Meinke et al., 1998). To date, eight steroleosin genes have been discovered in the Arabidopsis genome (Lin et al., 2002). Steroleosin is the third oil droplet protein with relatively high expression in the plant seeds. It is believed; steroleosin has key roles in brassinosteroid metabolism and plant signaling (Li et al., 2007; van der Schoot et al., 2011; Ferrer et al., 2017). Brassinosteroids in plants and mammals have number of regulatory roles like stress response, reproduction, growth, development and so on (Clouse and Sasse, 1998; Fujioka and Yokota, 2003; Zhou et al., 2015). Whether steroleosin has other functions, like regulation of oil contents in seeds and roles in brassinosteroid signaling pathways, still needs to be elucidated. Cit-regulatory elements are responsible for the transcriptional regulation of neighboring genes in order to carry out various biological functions. So far, less attention is paid to carry out promoter sequence analysis of steroleosin. Additionally, little study focuses on their structural features, properties and phylogenesis.

The Arabidopsis genomic sequence and various online gene expression databases offer an opportunity to analyze and predict gene functions by using different bioinformatics tools. In this study, the genomic wide analysis of steroleosin genes in Arabidopsis is presented. According to molecular weight, multiple sequence alignment and motif analysis, the eight steroleosin genes were classified into two groups, H-steroleosin and L-steroleosin. Moreover, the properties, evolutionary aspects, and structure of steroleosin genes were also investigated. Lastly, possible biological functions of steroleosin genes were predicted on the basis of promoter sequence analysis and their expression pattern.

MATERIALS AND METHODS

Identification of steroleosin genes in Arabidopsis: To find out steroleosin genes in Arabidopsis, HMM (Hidden Markov Model) and exact name searches were carried out in Arabidopsis genome. The knownArabidopsis steroleosin “At5g50700” was used as a query in the Arabidopsis information database (TAIR10.0, http://www.arabidopsis.org/) (Huala et al., 2001). The raw HMM of steroleosin domain PF00106 was found from the Pfam (http://pfam.sanger.ac.uk/) (version. 31.0). The protein sequences of the steroleosin genes were retrieved from the TAIR database. To verify the existence of steroleosin domain (PF00106) all the putative amino acid sequences were analyzed by the Interproscan (http://www.ebi.ac.uk/Tools/pfa/iprscan/) (version.67) (Hunter et al., 2012).

Physical and chemical properties of steroleosin genes: The ExPASy (http://web.expasy.org/compute_pi/) (Gasteiger et al., 2003) was used to analyze the characteristic features of steroleosin proteins. Putative phosphorylation sites (Ser, Thr and Tyr) were predicted through the NetPhos (http://www.cbs.dtu.dk/services/NetPhos/) (version. 3.1) (Blom et al., 1999). The hydrophatic plot was drawn in the ProtScale (http://web.expasy.org/ protscale/) with the Kyte and Doolittle method (Kyte and Doolittle, 1982) and the default setting. To find out the conserved domains within the steroleosin sequences, the MEME (http://meme.nbcr.net/meme/cgi-bin/meme.cgi) (Bailey et al., 2006) was used for discovering 10 different motifs. The annotation of motifs was performed through the Pfam (https://pfam.xfam.org/) (Finn et al., 2015).

Multiple sequence alignment and polygenetic analysis: The ClustalX (version. 2.1) (Larkin et al., 2007) was used for multiple protein sequence alignment of eight Arabidopsis steroleosins, one pine (P. massoniana) steroleosin and five Brassica napus steroleosins. The protein sequence of pine steroleosin was retrieved from gene bank with the accession No. KT731102 and accession numbers for B. napus steroleosins, BnSLO1-1, BnSLO1-2, BnSLO1-3, BnSLO2-1 and BnSLO2-2 were ACG69522, ACG69523, ACG69524, ACG69525 and ACG69526 respectively. Output and shading of sequence alignment were carried out by the Boxshade (http://www.ch.embnet.org/software/BOX_form.html) (version. 3.21) (Gasteiger et al., 2003).

To find out evolutionary relationship between different steroleosins, both maximum likelihood (ML) and neighbor joining (NJ) trees were populated. For NJ tree MEGA (version. 6.06) (Tamura et al., 2013) was used by using the Poisson model, gaps were deleted pairwise, and bootstrap replication was set to 1000. The PhyML (http://www.atgcmt.univ-montp2.fr/phyml/) (version.3.0) was employed for the ML tree. The LG model was used with substitution rate of 6, SPR mode and bootstrap replication was 500.

Chromosomal Localization and duplication events of steroleosin: By using locus names on the TAIR chromosome map tool, the localization of genes were mapped on five chromosomes of Arabidopsis. Two genes were considered as tandem duplications if they were separated by utmost of five genes (Ma and Zhao, 2010). Segmental duplication events were searched according to the previous study (Maher et al., 2006).

Upstream sequence element analysis: For the prediction of cis regulatory elements, about 2000 bp
upstream sequences of eight steroleosin genes were retrieved from the Arabidopsis TAIR website as their promoters and analyzed by the Promoter Scan (https://www-bimas.cit.nih.gov/molbio/proscan/) (version 2.0) and the PlantCare (Lescot et al., 2002).

Structural analysis of steroleosin genes in Arabidopsis thaliana: The gene structural and intron/exon analysis were carried out by using the Gene Structure Display Server (GSDS) (version 2.0) (Hu et al., 2014).

Protein-Protein interaction of steroleosins in Arabidopsis thaliana: Protein-protein interactions of Arabidopsis thaliana steroleosin were analyzed by using the STRING database (http://string.embl.de) (version 10).

Expression Analysis of Steroleosin genes: Expression patterns of steroleosin group in different Arabidopsis tissues were determined by using RNA-seq data. The NCBI SRA database was used to obtain RNA-seq data of bud, flower, inflorescence, leaf, root, silique, seed and germinating seed. Gene sequences of different steroleosins were used for the BLASTN analysis in the relevant databases. Parameters were as follows: identity percentage was set to 100%, lengths were according to the sequence length in the database. The calibration of the data was performed as fragments per kilo base of exon/per million fragments mapped (FPKM).

Because RNA-seq data under different stress conditions was scarce, microarray data was used instead. The AtGenExpression visualization tool (AVT, http://jsp.weigelworld.org/expviz/expviz.jsp) was used to perform microarrays analysis and visualization by using locus search with mean normalized value.

The heatmaps were produced with the R script, an online tool (https://www.hiv.lanl.gov/content/sequence/HEATMAP/heatmap.html) by using the log2-transformed-calibrated values of expression data (Text S1).

RESULTS

Identification, classification and characteristics of steroleosins in Arabidopsis: Eight Arabidopsis steroleosin proteins were identified by TAIR and HMM searches and were named by referring to previous studies (Lin et al., 2002; Li et al., 2007; Baud et al., 2009) with little modification. Among the identified steroleosins two i.e., At5g50600 and At5g50590 are completely same to At5g50700 and At5g50690 respectively, and were named as AtHSD1a/AtHSD1b (At5g50600/At5g50700) and AtHSD4a/AtHSD4b (At5g50590/At5g50690). The size of deduced amino acids, gene open reading frame (ORF), molecular weight (Mw) and isoelectric point (pI) value of each steroleosin are presented in table 1. The sizes, Mws, and pI values of AtHSD1a (At5g50600) and AtHSD4a (At5g50590) were found as same as AtHSD1b (At5g50700) and AtHSD4b (At5g50690) respectively. According to the molecular weight, the eight steroleosins were divided into two groups: high molecular weight and low molecular weight steroleosins, termed as H-steroleosin and L-steroleosin.

Protein alignment of eight steroleosins in Arabidopsis, one steroleosin in pine and five steroleosins in B. napus was performed to investigate structural features (Fig.1). Amino acids of H-steroleosin AtHSD1a (At5g50600) and AtHSD1b (At5g50700) are completely same, while L-steroleosin AtHSD4a (At5g50590) is fully identical to AtHSD4b (At5g50690). The analysis reveals that the insertion of 10 residues at the C-terminal is the main difference between H-steroleosin and L-steroleosin and this insertion makes the sterol binding region relatively larger. It is noteworthy that both the reported pine and B. napus steroleosin also exhibit the extra insertion (Fig.1).

The NADP(H) binding domain is quite conserved among all of the steroleosin proteins (Fig.1). The N-terminal hydrophobic domain is essential for the association with the oil droplet surface (Bhatla et al., 2009; Pasaribu et al., 2016). Our analysis also reveals that the proline knob motif is highly conserved in all steroleosin proteins (Fig.1). To further investigate the stability of the steroleosin proteins, hydrophobic plots were generated and the change of stability for amino acid mutation was predicted (Fig.S1). The result suggests that hydrophobic region of H-steroleosin is smaller than that of L-steroleosin, which led to decreased in stability (Fig.S1).

The putative phosphorylation sites, Ser, Thr and Tyr, were predicted and are marked on the Fig.1. According to AtHSD5 (At4g10020), Y67, S233, Y279 sites are conserved in H-steroleosin and T53, S96, S107, T119, T165, S201, S246 and S253, according to AtHSD4a (At5g50590), are conserved in L-steroleosin.

Phylogenetic analysis of steroleosins: Neighbor joining (NJ) and maximum likelihood (ML) trees were constructed to determine the evolutionary relationship of steroleosins (Fig.2). It was observed that bootstrap values of both methods were higher than 80%, which suggests the higher reliability of the trees. Moreover, both methods led to almost similar topological structures of both trees. The phylogenetic trees were divided into two groups and both pine and B. napus steroleosins were found closely related to H-steroleosin (Fig.2), indicating that H-steroleosins may be more primitive and L-steroleosins may be evolved from H-steroleosins. Moreover, BnSLO1-1, 2 and 3 are closely related to AtHSD1a (At5g50600) and AtHSD1b (At5g50700). Similarly, BnSLO2-1 and 2 were found closely related to AtHSD5 (At4g10020). It is noteworthy that the results of
polygenetic tree are matched to the two groups divided by the molecular weight.

Motif analysis: In order to find out different motifs in Arabidopsis and B. napus, ten motifs were identified and analyzed. It was observed that all steroleosins in Arabidopsis and B. napus exhibit motif 1-4 and motif 6 (Fig. 3A). Motif 5 on the other hand, was absent only in AtHSD2 (At3g47350). Similarly, motif 9 was present in all steroleosins except AtHSD6 (At5g50770). It is noteworthy that motif 7 and Motif 8 were present only in H-steroleosins (Fig. 3A). Moreover, motif 10 was present only in AtHSD1a (At5g50600), AtHSD1b (At5g50700) and BnSLO1-1 and 2. The annotation of the motifs revealed that two of them were the parts of the steroleosin whereas the annotation for the others was not available (Table 2).

Steroleosin genes structure analysis: The intron/exon analysis of eight steroleosins in Arabidopsis and five steroleosins in B. napus were performed (Fig. 3B). The intron and exon regions of the Arabidopsis and B. napus steroleosin genes were conserved except AtHSD2 (At3g47350). Six exons and five introns were found in seven Arabidopsis and five B. napus steroleosins with a 0, 1, 0, 0 and 1 intron phase, while in AtHSD2 (At3g47350), seven exon and six intron were identified with a 0, 1, 0, 0, 0 and 1 intron phase. Moreover, the last exon in all H-steroleosins of Arabidopsis and five steroleosins in B. napus is the largest one, which is due to the extra insertion. Similar to the same protein sequences, sizes of introns and exons in AtHSD4a (At5g50590) and AtHSD1a (At5g50600) are also completely as same as AtHSD4b (At5g50690) and AtHSD1b (At5g50700) respectively. The first intron phase of BnSLO2-1 and 2 were relatively larger as compared to the other steroleosins. Moreover, compared to other steroleosin genes, AtHSD2 (At3g47350) shows the conserved intron phase except that there is an extra last intron and the last exon is divided into two exons (Fig. 3B). Combining the above evolution analysis, the results indicate that AtHSD2 (At3g47350) may evolve from AtHSD3 (At3g47360) by insertion of an intron in the last exon.

Protein-protein interaction of Arabidopsis steroleosins: In order to understand the possible roles of the steroleosins in Arabidopsis, the protein-protein interaction maps of six Arabidopsis steroleosins were drawn by using STRING software (Fig. 4). It was revealed that all the steroleosin genes were related to the genes involved in fatty acid metabolism. Our analysis suggested that AtHSD1a (At5g50600), and AtHSD3 (At3g47360) were interacted with oleosin gene family (Fig. 4A and C). The oleosin gene family was reported to have role in seed lipid accumulations and their stability (Lu et al., 2018). Similarly both AtHSD1a (At5g50600) and AtHSD3 (At3g47360) are related to the LACS5 (At4g11030) and LACS8 (At2g04350), which are AMP-dependent synthetase and ligase family protein and are responsible for long chain fatty acid-CoA biosynthesis (Clark et al., 2018). Furthermore, it was also found that AtHSD3 (At3g47360) and AtHSD4b (At5g50690) were regulated by the Glycine Rich protein family (GRP) (Fig. 4C and F). Our study revealed that AtHSD4a (At5g50590) and AtHSD4b (At5g50690) were interrelated with each other (Fig. 4D and F). Similarly, AtHSD2 (At3g47350) has interactions with BEN1 protein which has roles in brassinosteroids biosynthesis (Okleštкова et al., 2015) (Fig. 4B). AtHSD5 (At4g10020) was found to be interacted by KCS3 and KAS1 gene family which are reported to have important biological functions in fatty acid biosynthesis (Fig. 4E).

Chromosomal localization and duplications of steroleosin: The localization of steroleosin genes on five different chromosomes of Arabidopsis was investigated. As presented in Fig. 5, there is no steroleosin gene located on the chromosome 1 and 2. However, five steroleosin genes are located on the chromosome 5, whereas two are on chromosome 3 and only one was located on the chromosome 4.

The investigations on the duplication events suggest that AtHSD2 (At3g47350) and AtHSD3 (At3g47360) are tandemly duplicated, which are also closely related to each other on the proteins level (Fig. 5, Table 3). Similarly, tandem duplication was also found among two pairs AtHSD1a/AtHSD4a and AtHSD1b/AtHSD4b (At5g50600/At5g50590 and At5g50700/At5g50690) of steroleosin on the chromosome 5 (Fig. 5, Table 3). On the other hand, segmental duplications analysis reveals that AtHSD1a (At5g50600) and AtHSD4b (At5g50590) are the segments of AtHSD1b (At5g50700) and AtHSD4b (At5g50690) respectively with 100% identity at protein level (Fig. 5, Table 4), indicating that the segmental duplication occurred not long time ago.

Promoter analysis of steroleosin genes in Arabidopsis: To determine the potential function of steroleosins in Arabidopsis, promoter sequence analysis was performed. Up to 2000 bp upstream sequences of steroleosins were retrieved and subjected to the Promoter Scan 2 and the Plant Care online tools.

According to the results from the promoter scan 2 (Text S2), the RY repeat element existed in AtHSD2 (At3g47350), AtHSD1a (At5g50600) and AtHSD1b (At5g50700) (Text S2). In contrast, the Plant care analysis suggests, RY repeat element is present only in AtHSD1a (At5g50600) and its homologue partner AtHSD1b (At5g50700). Similarly Skn-1 motif (Text S2) is found in all Arabidopsis steroleosin genes except AtHSD3 (At3g47360). Similarly, according to promoter scan 2 analyses MYB and E-Box elements exists in all of
the steroleosin genes of Arabidopsis. In addition to this, many cis elements related to environmental stress, light responsiveness, and phytohormone signaling were also identified in different steroleosin genes.

Expression analysis: To determine the expression patterns of steroleosin genes in different tissues of Arabidopsis, the RNA-seq data was retrieved from SRA database and subjected to generate heatmap. As shown in Fig.5A, three H-steroleosin genes, including *AtHSD1a* (*At5g0600*), *AtHSD1b* (*At5g50700*) and *AtHSD5* (*At4g10020*), exhibit relatively higher expression levels in seeds, siliques and germinating seeds. Whereas, other H-steroleosin *AtHSD6* (*At5g50770*) shows as similar expression patterns as other three H-steroleosins except relatively low expression in germinating seeds. On the contrary, four L-steroleosin genes show two types of expression patterns: *AtHSD2* (*At3g47350*) and *AtHSD3* (*At3g7360*) express at a relative high levels in all tissues, while *AtHSD4a* (*At5g50590*) and *AtHSD4b* (*At5g50690*) express at very low levels in all tissues. These results indicate that H-steroleosin genes mainly express in seed related tissues and L-steroleosin genes evolve to two directions: express in all tissue or in no tissue. The two L-steroleosins *AtHSD4a* (*At5g50590*) and *AtHSD4b* (*At5g50690*) may not play function or just do minor function in all Arabidopsis tissues.

![Fig. 1 Multiple sequence alignment of the eight steroleosins in Arabidopsis and one steroleosin in pine and five steroleosins in *Brassica napus*. Extra residual insertion is boxed with blue line. NADP(H) binding motif is boxed with green line. Sterol binding region is boxed with red line. Proline-knob domain is boxed with](image-url)
red line. Putative phosphorylation sites of L-steroleosin are marked by upper black arrow with ‘‘L’’ and H-steroleosin by blue arrow with ‘‘H’’.

Expression analysis under different stress conditions:
In order to examine possible roles of steroleosins, expression patterns of steroleosin genes under different stress and hormonal conditions were investigated by mining microarray data. Among the eight different steroleosin genes, the microarray data was found for AtHSD5 (At4g10020), AtHSD1a (At5g50600), AtHSD4a (At5g50590) and AtHSD6 (At5g50770). Expression analysis under different hormonal conditions showed either in seeds or seedling steroleosins has inductive response to abscisic acid (Fig.5B), while other hormones showed very little or negligible effects on the steroleosin genes (data not shown). Our analysis suggests, among all steroleosins AtHSD1 (At5g50600) was induced in seedlings under ABA stress conditions. On the contrary, all steroleosins in seed tissues were sensitive to different concentrations of ABA (Fig.5B). The result of various abiotic stresses shows that AtHSD6 (At5g50770) and AtHSD1a (At5g50600) were induced in the aerial parts under both osmotic and heat stress condition (Fig.S2). Moreover, AtHSD6 (At5g50770) was also induced in aerial parts under oxidative stress (Fig. S2). Similarly, AtHSD1a (At5g50600) was induced in roots under both osmotic and heat stress condition, and AtHSD4a (At5g50590) was induced in cell culture and roots under heat and genotoxic stresses (Fig.S2). These results suggest that these steroleosins may play some roles under numerous stress conditions.

Fig. 2 Phylogenetic trees of eight steroleosins in Arabidopsis and one steroleosin in pine by maximum likelihood method in PhyML 3.0 (A) and neighbor-joining method in MEGA 6.06 (B).
Fig. 3. Distribution of motifs in eight *Arabidopsis thaliana* one pine and five *Brassica napus* sterolesins (A). Analysis of gene structure and intron phase prediction of sterolesin genes in *Arabidopsis thaliana* and *Brassica napus* (B).
Fig 4. Protein-protein interaction of steroleosin genes in Arabidopsis. A, B, C, D, E and F represents the protein-protein interactions of At5g50600, At3g47350, At3g47360, At5g50590, At4g10020 and At5g50690, respectively.

Fig. 5 Chromosomal localization of steroleosin genes in Arabidopsis. The number indicated at the top represents the chromosome number. The segmentally duplicated genes are indicated by dotted box.
Fig. 6 Expression profiles of Arabidopsis steroleosin genes using RNA-seq data. (A) Expression patterns in different development tissues. The heat map was generated by using log2-transformed-calibrated values. The color scale representing average log signal values is shown at the bottom. (B) Expression patterns under various hormones (ABA, abscisic acid).

Table 1. Classification and characteristics of steroleosin genes in Arabidopsis.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>TAIR locus ID</th>
<th>Size (ORF, bp)</th>
<th>Size (AA)</th>
<th>pI</th>
<th>Mw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroleosin H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AtHSD1a</td>
<td>At5g50600</td>
<td>1050</td>
<td>349</td>
<td>5.91</td>
<td>39086.9</td>
</tr>
<tr>
<td>AtHSD1b</td>
<td>At5g50700</td>
<td>1050</td>
<td>349</td>
<td>5.91</td>
<td>39086.93</td>
</tr>
<tr>
<td>AtHSD5</td>
<td>At4g10020</td>
<td>1170</td>
<td>389</td>
<td>6.41</td>
<td>43441.75</td>
</tr>
<tr>
<td>AtHSD6</td>
<td>At5g50770</td>
<td>1029</td>
<td>342</td>
<td>8</td>
<td>37993.42</td>
</tr>
<tr>
<td>Steroleosin L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AtHSD2</td>
<td>At3g47350</td>
<td>966</td>
<td>321</td>
<td>7.69</td>
<td>35715.64</td>
</tr>
<tr>
<td>AtHSD3</td>
<td>At3g47360</td>
<td>930</td>
<td>309</td>
<td>8.66</td>
<td>34947.04</td>
</tr>
<tr>
<td>AtHSD4a</td>
<td>At5g50590</td>
<td>900</td>
<td>299</td>
<td>9.07</td>
<td>33247.78</td>
</tr>
<tr>
<td>AtHSD4b</td>
<td>At5g50690</td>
<td>900</td>
<td>299</td>
<td>9.07</td>
<td>33247.78</td>
</tr>
</tbody>
</table>

Table 2. Motif sequences and annotation.

<table>
<thead>
<tr>
<th>Motif no.</th>
<th>Width</th>
<th>Sequence</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>GKVVLITGASSGIGEQJAYEYAKRGACLALVAR</td>
<td>Short chain dehydrogenase</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>HADVSKPDDCRRIDETISHFGRDLHDYNAGIGQ</td>
<td>Enoyl-(Acyl carrier protein) reductase</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>MDFNFWGYSVGYFTYFALPYLRKSNGKIVMASSIAW</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>RMSFYNASKAALNNYETELGDLGGDVGITIVTPG</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>CAKAIIVNGVCRGQRYVTEPSWYKVTRY</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>MDLJNLDLNNAPPFTFGGLCFLHPPFYFFFKFLQS</td>
<td>NA</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>YIESELITQGYMSEEGLVQIEEDVQVGAFOPE</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>LWKVFCPELJEWGCRLLFLSGG</td>
<td>NA</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>RLEVVAEARI4LGSN</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td>GTSEDTLALNNKILDIPGVRSAAYAESPRTPEIKSD</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table 3. Tandem duplicated steroleosin genes in Arabidopsis.

<table>
<thead>
<tr>
<th>Duplicated Steroleosin 1</th>
<th>Location</th>
<th>Duplicated Steroleosin 2</th>
<th>Location</th>
<th>Identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At3g47350</td>
<td>17446818-1744970</td>
<td>At3g47360</td>
<td>17451112-17452843</td>
<td>70.46%</td>
</tr>
<tr>
<td>At5g50700</td>
<td>20623024-20625034</td>
<td>At5g50690</td>
<td>20621330-20622638</td>
<td>42.12%</td>
</tr>
<tr>
<td>At5g50600</td>
<td>20589702-20591689</td>
<td>At5g50590</td>
<td>20587988-20589296</td>
<td>42.12%</td>
</tr>
</tbody>
</table>

Table 4. Segmental duplication in steroleosin genes.

<table>
<thead>
<tr>
<th>Duplicated Steroleosin 1</th>
<th>Duplicated Steroleosin 2</th>
<th>Flanking genes</th>
<th>Identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At5g50600</td>
<td>At5g50700</td>
<td>10</td>
<td>100%</td>
</tr>
<tr>
<td>At5g50590</td>
<td>At5g50690</td>
<td>10</td>
<td>100%</td>
</tr>
</tbody>
</table>

DISCUSSION

Types of steroleosins in Arabidopsis thaliana: On the Mw basis, eight steroleosin genes were divided into two groups, H-steroleosin and L-steroleosin (Table 1). Similar classification system was previously used for both oleosin and calesin, respectively (Wu et al., 2010; Shen et al., 2014). The results of phylogenetic tree, multiple sequence alignment and motif analysis also support this classification (Fig.2, Fig.1 and Fig.3A). Furthermore, comparisons were made between Arabidopsis, pine and B. napus steroleosins which further suggested that H-steroleosins of Arabidopsis were more closely related to both the reported pine and B. napus steroleosins. Similarly, phylogenetic analysis suggests that BnSLO1-1, 2 and 3 were related to AtHSD1a (At5g50600) and AtHSD1b (At5g50700) whereas BnSLO1-1 and 2 were related to AtHSD5 (At4g10020), these results were similar to that of previous studies (Jolivet et al., 2009). Unlike oleosin and calesin, steroleosin N-terminal hydrophobic domain lacks a proline knot, instead it contains the conserved proline residues termed as “proline knob” (Fig.1) which is presumed to have similar functions like proline knot in oleosin and calesin (Chapman et al., 2012; Tzen, 2012). Similarly, modifications of N-terminal in steroleosin may be related to the function and stability of this protein.

Protein alignment shows the insertion of 10 extra residues at the C-terminal of H-steroleosin, which is the main difference between two classes of steroleosins (Fig.1). The comparison between the two groups further suggests that the pI values of H-steroleosin were lower to 6.5 except AtHSD6 (At5g50770) whereas, these values were found higher than 7 in L-steroleosin (Table 1), which suggests that two steroleosin groups may function or regulate under different microenvironments. Moreover, two groups have numerous different conserved phosphorylation sites (Ser, Thr and Tyr) (Fig.1). In the previous studies, structural analysis revealed that the C-terminal of different steroleosin genes varied in length (Lin et al., 2002; Laibach et al., 2015; Huang, 2018). Whether, the two steroleosin groups have diversified functions, is still needed to be elucidated.

Evolution study of steroleosins in Arabidopsis: Pine is relatively old gymnosperm and pine steroleosin is among the H-steroleosin group in phylogenetic tree (Fig.2), suggesting that H-steroleosin group is more primitive than L-steroleosin. Moreover, the phylogenetic analysis shows that AtHSD6 (At5g50770) is between the two groups of steroleosins. Similarly, molecular weight and pI value are also in the middle of both groups, suggesting that AtHSD6 (At5g50770) is probably in the evolutionary process from higher to lower molecular weight steroleosins.

Segmental duplication are the DNA segments, which are almost identical (90-100%) and exist on more than one site in the genome (Khaja et al., 2006). Within Arabidopsis, AtHSD1a (At5g50600) and AtHSD4a (At5g50590) were found segments of AtHSD1b (At5g50700) and AtHSD4b (At5g50690), respectively (Fig.5, Table 4), which is due to the 33-kb duplication events on chromosome 5 (Baud et al., 2009). Moreover, both pairs show 100% sequence similarity at protein levels (Fig. 5, Table 4), suggests that segmental duplications are newly developed in steroleosin genes. However, among the tandemly duplicated gene pairs in steroleosin, there exists variation at the protein identity levels (Table 3). Collectively, these findings suggest that tandem duplications of Arabidopsis steroleosin were much earlier as compared to those of segmental duplication events. The evolutionary processes in the gene family can also be assessed by intron/exon modifications, such as deletion or insertion of intron and exon (Xu et al., 2012). Our results suggest that all the steroleosin in Arabidopsis exhibit conserved introns and exon with an exception that is AtHSD2 (At3g47350) has one extra exon and intron (Fig. 3B).

Potential functions of steroleosins in Arabidopsis thaliana: The protein-protein interaction of steroleosins genes in Arabidopsis suggests that all the steroleosins in Arabidopsis are related to genes involved in Fatty acid biosynthesis (Fig. 4). There are several reports on
steroloeosins which suggests that steroleosins have roles in the brassinosteroids signaling and pathways (Du et al., 2019). Our analysis suggested that AtHSD2 (At3g47350) is interacted with BEN1 which has a key role in brassinosteroid metabolism (Kekez et al., 2018; Zheng et al., 2018). AtHSD3 (At3g47360) and AtHSD4b (At5g50690) were found to be interacted with several genes of the GRP family (Fig. 4C and F), which have important roles related to plant growth, development and response to abiotic stress (Yang et al., 2019).

Promoter sequence analysis showed that RY-repeat elements were found in AtHSD3 (At3g47360), AtHSD5 (At4g10020), AtHSD1a (At5g50600) and AtHSD1b (At5g50700) genes (Text S2). RY element is known to be bound by the transcription factors with B3 domain (Ezcurra et al., 2000; Jing et al., 2019). Numerous transcription factors such as LEC2, FUS3 and ABI3 exhibit B3 domain (Freitas et al., 2019), which are known to regulate lipid metabolism (McGlew et al., 2015). The SKn-1 motif, which is also known to have roles in lipid metabolism (Pang et al., 2014; Dowen, 2019), exists on promoters of most steroleosin genes. Collectively these results suggest that steroleosin genes may play roles in oil droplet accumulation or degradations. The three steroleosin genes AtHSD5 (At4g10020), AtHSD1a (At5g50600) and AtHSD1b (At5g50700) are highly expressed in the seeds (Fig.5A), which are the main sites for TAG assembly and are believed to provide energy for germinating seeds. Therefore, the high expression of three steroleosins in seeds further suggests their roles in triacylglycerol metabolism.

Promoter scan 2 analysis also showed MYB element in various steroleosin genes (Text S2). This cis-element is responsible for brassinosteroids signaling pathway. GATA and GT1 motifs are the light-response promoter elements and GATA has also roles in BR-pathways. The GATA element functions together with the G-box or GT1 motifs for their response to light signal which involve different photoreceptors (Luo et al., 2010; Liu et al., 2019). According to the Promoter scan 2 analyses; these two elements are present in all steroleosin genes (Text S2). By the Plant care analysis numerous stress and signal related cis-elements, such as MBS, TC-rich repeats and LTR, were also found in different steroleosin genes (Text S2). These stress signal responsive cis elements have also been reported to be related with BRZ transcription factors in Zea mays (Manoli et al., 2018), which collectively suggest that steroleosin genes may play roles to different brassinosteroids.

Previous studies on steroleosins in relation to abscisic acid suggest steroleosins are sensitive to different ABA concentrations. Similarly, ABA and brassinosteroids are antagonistic to each other (Xu et al., 2012; Ohri et al., 2019). From the results of plant care and promoter scan 2 analysis ABRE element, responsible for abscisic acid responsiveness (Finn et al., 2015) was found in H-steroleosins (Table S3). Expression analysis under different hormonal stress also suggests that steroleosins are sensitive to different ABA concentrations (Fig. 5B). Collectively, these results are also in support that steroleosins may have roles in ABA insensitivity and brassinosteroids signaling pathways.

In conclusion, eight steroleosins in Arabidopsis are divided into two groups with different molecular weights, motifs, properties and expression patterns. H-steroleosins are more primitive and larger than L-steroleosins, and mainly express in seeds and siliques, suggesting that they may have roles in storage lipids. L-steroleosins may evolve from H-steroleosins and have diversified their expression patterns, either expressing or not expressing in all tissues, indicating their diversified physiologic roles in plant development. Additionally, the existences of sterol binding domains and cis-elements, related to brassinosteroid signaling pathway, also suggest that steroleosins may play their roles through the regulation of brassinosteroids and the binding of sterols.

Acknowledgements: This work was supported by the National Natural Science Foundation of China (31270295) and the Program of Introducing Talents of Innovative Discipline to Universities (Project 111) from the State Administration of Foreign Experts Affairs (#B18042) “Crop breeding for disease resistance and genetic improvement”.

REFERENCES

