DIFFERENT SWEET SORGHUM VARIETIES HAVE BEEN WIDELY USED DUE TO THEIR TOLERANCE TO ARID CONDITIONS AND THEIR CAPABILITIES TO PRODUCE ADEQUATE AMOUNTS OF FEED IN AREAS OF TYPICALLY LIMITED WATER RESOURCES. THE HIGHER SUGAR CONTENT IN SWEET SORGHUM SILAGE CAN PROVIDE GOOD QUALITY FEED FOR THE LIVESTOCK INDUSTRY. THE PURPOSE OF THIS STUDY was to evaluate and compare the forage yield and silage quality of different sweet sorghum varieties under the climatic conditions of the Eastern Mediterranean region. A randomized complete block design with four replications was used in this study. Two sweet sorghum hybrids (M81-E, Topper-76) and two sorghum varieties (No91, M81) were grown under arid conditions in the Eastern Mediterranean region. The sorghum plants were harvested at the physiological maturity stage. The forage and silage were analyzed for yield, dry matter, crude protein, neutral detergent fiber, acid detergent fiber, dry matter intake, and relative feed value. The results indicate that the sweet sorghum varieties had higher herbage yield and dry matter content than the sorghum varieties. The sweet sorghum varieties also had higher crude protein and lower neutral detergent fiber content than the sorghum varieties. The study concludes that sweet sorghum hybrids and varieties have the potential to produce good quality feed under arid conditions.
Climate and soil characteristics of the experimental site: Average temperature between the months June-October was 25.1 °C in 2016 and 24.8 °C in 2017. Those values were similar with the long-term averages. Temperatures in June, July and August were around 42-43 °C. Average relative humidity of the same period was 79.0% and total precipitation was 46-48 kg/m².

Experimental soils belong to Arikli soil series. Soil samples were taken from 0-15 and 15-30 cm soil profiles. Analyses revealed that soil pH varied between 7.0 and 7.50, total salt varied between 0.22 and 0.27%, N between 0.10 and 0.19%, organic carbon (OC) between 0.63 and 0.90%, phosphorus (P) between 0.63 and 0.90 mg kg⁻¹, lime content (CaCO₃) between 32.5 and 35.0%, sand between 24 and 28%, silt between 41 and 43%, clay between 30 and 33% and soil texture was clay-loam (CL).

Experimental Setup: Field experiments were conducted in 2016 and 2017 over the experimental fields of Dogankent Locality of Eastern Mediterranean Agricultural Research Institute (DATAEM) (36° 51' 35” N and 35° 20' 43” E) in a randomized complete block design with four replications. Sowing was performed after wheat harvest in mid-June. Before sowing, 50 kg ha⁻¹ of both nitrogen and phosphorus were applied to experimental plots as base fertilizer. Each variety was sown at 70 cm row spacing and 15 cm on-row plant spacing over 5 m long 4 rows. When the plants reached to a height of 40-50 cm, additional 50 kg ha⁻¹ pure nitrogen was supplied manually as top-dressing fertilizer and irrigations were initiated then. Plants were harvested at different dates between milk and dough stages. Side rows and 0.5 m sections from the top and bottom of the plots were omitted as to consider the side effects and manual harvest was performed from the remaining sections of middle two rows. Plot yields were determined and then yields per hectare were calculated accordingly.

Sample preparation and chemical analyses: For harvest, five plants were randomly selected from each plot and were used to make silage. The selected five plants (leaf-stalk and panicle) were chopped into 3-5 cm pieces with a chipper-chopper machine and made ready for ensilage. About 1 kg fresh samples were placed into special plastic bags (≥110 μ thickness) in two parallels for each plot and oxygen was removed by 99.9% with the aid of Crompack vacuum device. Bags were automatically sealed to finalize ensilage. Vacuumed silage materials were preserved at room temperature for 60 days. Ensiled materials were dried, weighed and ground to pass through 1-2 mm sieves. Kjeldahl method was used to determine nitrogen (N) content of the ground samples. Crude protein ratio was determined with the aid of equation of Nx6.25 (AOAC, 1990). Of the cell membrane components, ADF, ADL and NDF ratios (%) of the samples were determined in accordance with the method specified by Van Soest et al. (1991) with a ANKOM fiber analyzer device. Digestible dry matter ratios (DDM), dry matter intake (DMI) and relative feed value (RFV) of the samples were determined by using the equations provided by Schroeder (1994): DDM=88.9-(0.779 x ADF%); DMI=120/NDF%; RFV=(DDM% x DMI%)/1.29. Net Energy (NE) (Mcal/kg) was calculated by using the equation of NE=1.892-(0.0141’ADF)(Anonymous, 2018).

Experimental data were analyzed using proc mixed procedure in SAS program in accordance with randomized complete blocks design (RCBD). Significant means were compared using TUKEY test at 5% level (Littell et al., 2006).

RESULTS AND DISCUSSION

Biomass Yield (Mg ha⁻¹): For biomass yield, also called as fresh biomass or green herbage yield, the varieties and varieties x year interactions were found to be significant. Biomass yields of the years and varieties varied between 129.5 and 206.7 Mg ha⁻¹. M81-E, Topper-76, UNL hybrid and No91 varieties had biomass yields of over 180 Mg ha⁻¹. In previous studies conducted with different genotypes under different ecologies, biomass yields were reported as between 11.5 and 112 Mg ha⁻¹ (Turgut et al., 2005; Korpos et al., 2008; Bellmer et al., 2010; Agung et al., 2013; Perazzo et al., 2017). Present biomass yields were greater than those earlier ones and such greater values indicated that present ecology was suitable for sorghum culture.

Dry Matter Yield (Mg ha⁻¹): For dry matter yield, means of year and varieties and variety x year interactions were found to be significant. Dry matter yields of the years and varieties varied between 38.8 and 69.0 Mg ha⁻¹. As the average of years, the greatest dry matter yield was obtained from UNL hybrid genotype. In earlier studies conducted with different genotypes at different ecologies, dry matter yields were reported as between 6.59 and 33.9 Mg ha⁻¹ (Turgut et al., 2005; Bellmer et al., 2010; Perazzo et al., 2017; Ekefre et al., 2017). As it was in biomass yields, present dry matter yields were also greater than the earlier ones. Significant positive correlations were reported between herbage yield and dry matter yield (Iyanar et al., 2010).

pH: Effects of years, varieties and variety x year interactions on silage pH values were found to be significant (Table 2). The pH values of the years and varieties varied between 3.21 and 3.82. Feed sorghum silage is fermented like as maize silage and generally has a pH of below 4 (Filya, 2003; Contreras-Govea et al., 2010). Junior et al. (2015) reported pH of sorghum silage as between 3.60 and 3.68. Present findings comply with those earlier reports.

Crude Protein Ratio (%): There were significant differences in crude protein ratios of the varieties and years. Crude protein ratios of the varieties varied between 4.08 and 5.22% and Ramada variety had greater CP ratios than
the others. In previous studies, crude protein ratios of sweet sorghum varieties were reported as between 2.6-8.23% (Lema et al., 2001; Madibela et al., 2002; Rodrigues et al., 2006; Junior et al., 2015; Durul, 2016). Present findings were within the earlier reports, greater than some and smaller than the others. Such differences were attributed to differences in varieties, ecologies and growing techniques.

Table 1. Biomass and dry matter yields of sweet sorghum varieties.

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Biomass Yield (Mg ha(^{-1}))</th>
<th>Dry Matter Yield (Mg ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>M81-E</td>
<td>181.0 ab</td>
<td>179.2 ab(^{1})</td>
</tr>
<tr>
<td>Ramada</td>
<td>129.5 b</td>
<td>173.4 ab</td>
</tr>
<tr>
<td>Roma</td>
<td>157.1 ab</td>
<td>182.3 ab</td>
</tr>
<tr>
<td>Topper 76</td>
<td>177.7 ab</td>
<td>185.4 a</td>
</tr>
<tr>
<td>UNLHybrid</td>
<td>193.8 a</td>
<td>183.6 ab</td>
</tr>
<tr>
<td>No91</td>
<td>206.7 a</td>
<td>170.5 ab</td>
</tr>
<tr>
<td>Mean</td>
<td>174.3</td>
<td>179.1</td>
</tr>
<tr>
<td>CV (%)</td>
<td>12.39</td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\)The means indicated with the same capital letter in the same column are not significantly different according to the Tukey test at \(P \leq 0.05\)
\(^{2}\) The means indicated with the same capital letter in the same row are not significantly different according to the Tukey test at \(P \leq 0.05\)
\(^{+}\) The means of different year-cultivar combinations with the same lower case letters are not significantly different according to the Tukey test at \(P \leq 0.05\)

Table 2. Silage pH and crude protein ratios of sweet sorghum varieties.

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>pH</th>
<th>Crude Protein Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>M81-E</td>
<td>3.42 bc</td>
<td>3.40 bc(^{1})</td>
</tr>
<tr>
<td>Ramada</td>
<td>3.46 bc</td>
<td>3.59 ab</td>
</tr>
<tr>
<td>Roma</td>
<td>3.36 bc</td>
<td>3.82 a</td>
</tr>
<tr>
<td>Topper 76</td>
<td>3.43 bc</td>
<td>3.53 abc</td>
</tr>
<tr>
<td>UNLHybrid</td>
<td>3.53 abc</td>
<td>3.54 abc</td>
</tr>
<tr>
<td>No91</td>
<td>3.37 bc</td>
<td>3.21 c</td>
</tr>
<tr>
<td>Mean</td>
<td>3.43 B</td>
<td>3.51 A(^{+})</td>
</tr>
<tr>
<td>CV (%)</td>
<td>4.05</td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\)The means indicated with the same capital letter in the same column are not significantly different according to the Tukey test at \(P \leq 0.05\)
\(^{2}\) The means indicated with the same capital letter in the same row are not significantly different according to the Tukey test at \(P \leq 0.05\)
\(^{+}\) The means of different year-cultivar combinations with the same lower case letters are not significantly different according to the Tukey test at \(P \leq 0.05\)

Crude Ash Content (%): Significant differences were observed in crude ash contents only of the years. Crude ash (CA) contents of the years and varieties varied between 4.87 and 7.48%. Average ash content of the first year (6.73%) was greater than the ash content of the second year (5.83%). Dry matter ratios were also greater in the first year than in the second year (Figure 1). Such a case may be related to leaf-stalk ratio. Madibela et al. (2002) reported greater CA content for leaves (115 g kg DM) than for stalks (60.2 g kg DM) of sweet sorghum. Similarly, Elseed et al. (2007) indicated that plant stalks tend to have less ash and silica; Monti et al. (2008) reported greater ash content for leaves (82 g kg DM) than for stalks (50 g kg DM) of sweet sorghums. Crude ash contents of sorghum were reported as between 2.5 and 4.9% (Lema et al., 2001; Trulea et al., 2013). Madibela et al. (2002) reported crude ash contents of sweet sorghum varieties as between 69.4 and 91.5 g kg DM.

Acid Detergent Lignin (%): The differences in acid detergent lignin (ADL) values of the varieties were not found to be significant (Table 3). ADL values of the years and varieties varied between 4.36 and 6.90%. In previous studies, ADL values of sweet sorghum varieties were reported as between 3.5 and 5.2% (Lema et al., 2001) and between 25.5 and 39.8 g kg DM (Madibela et al., 2002).

Neutral Detergent Fiber (%): Only the years were found to be significant for neutral detergent fiber (NDF). The NDF values of the years and varieties varied between 35.15 and 46.90%. The varieties Ramada and Roma had lower NDF values than the others. Such a case was attributed to greater leaf ratios of these varieties. Similar findings were also reported by Yucel et al. (2018). NDF value of the first
year (43.96%) was greater than the second year (38.54%). Such a case was attributed to greater DM yield of the first year (Table 1), thus to greater ripening of the plants and increased cell membrane substances. In previous studies, NDF values of sweet sorghum varieties were reported as between 32.6 and 64.9% (Lema et al., 2001; Gomes et al., 2006; Mahmood et al., 2013; Durul, 2016; Neto et al., 2017). Present findings comply with those earlier ones.

Acid Detergent Fiber (%): The differences in acid detergent fiber (ADF) values of the varieties were found to be significant. ADF values of the years and varieties varied between 23.62 and 29.18%. As it was in NDF values, again the varieties Ramada and Roma had lower ADF values. Such a case was attributed to leafy nature of the stalks. In general, ADF, ADL and cellulose contents followed the same trend as NDF (Lema et al., 2001). In previous studies, ADF values of sweet sorghum varieties were reported as between 24.4 and 42.0% (Lema et al., 2001; Mahmood et al., 2013; Durul, 2016) and between 260.0-324.4 g kg DM (Madibela et al., 2002).

Table 3. Silage crude ash and ADL values of sweet sorghum varieties.

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Crude Ash Content (%)</th>
<th>Mean</th>
<th>Acid Detergent Lignin (%)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>2017</td>
<td></td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>M81-E</td>
<td>7.06</td>
<td>4.87</td>
<td>5.97</td>
<td>6.90</td>
</tr>
<tr>
<td>Ramada</td>
<td>6.25</td>
<td>5.75</td>
<td>5.99</td>
<td>5.13</td>
</tr>
<tr>
<td>Roma</td>
<td>6.72</td>
<td>5.41</td>
<td>6.06</td>
<td>5.33</td>
</tr>
<tr>
<td>Topper 76</td>
<td>7.48</td>
<td>6.60</td>
<td>7.04</td>
<td>5.71</td>
</tr>
<tr>
<td>UNLHybrid</td>
<td>7.32</td>
<td>5.54</td>
<td>6.43</td>
<td>6.05</td>
</tr>
<tr>
<td>No91</td>
<td>5.58</td>
<td>6.79</td>
<td>6.19</td>
<td>5.75</td>
</tr>
<tr>
<td>Mean</td>
<td>6.73 A</td>
<td>5.83 B</td>
<td>6.28</td>
<td>5.81</td>
</tr>
<tr>
<td>CV (%)</td>
<td>18.49</td>
<td></td>
<td>19.54</td>
<td></td>
</tr>
</tbody>
</table>

+ The means indicated with the same capital letter in the same row are not significantly different according to the Tukey test at P≤0.05

Table 4. Silage NDF and ADF values of sweet sorghum varieties.

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Neutral Detergent Fiber (%)</th>
<th>Mean</th>
<th>Acid Detergent Fiber (%)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>2017</td>
<td></td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>M81-E</td>
<td>46.90</td>
<td>39.31</td>
<td>43.10</td>
<td>29.18</td>
</tr>
<tr>
<td>Ramada</td>
<td>43.07</td>
<td>35.15</td>
<td>39.11</td>
<td>25.00</td>
</tr>
<tr>
<td>Roma</td>
<td>42.93</td>
<td>35.62</td>
<td>39.28</td>
<td>26.56</td>
</tr>
<tr>
<td>Topper 76</td>
<td>44.29</td>
<td>39.53</td>
<td>41.91</td>
<td>26.13</td>
</tr>
<tr>
<td>UNLHybrid</td>
<td>42.55</td>
<td>39.57</td>
<td>41.06</td>
<td>28.31</td>
</tr>
<tr>
<td>No91</td>
<td>44.05</td>
<td>42.04</td>
<td>43.05</td>
<td>26.70</td>
</tr>
<tr>
<td>Mean</td>
<td>43.96 A</td>
<td>38.54 B</td>
<td>41.25</td>
<td>26.98</td>
</tr>
<tr>
<td>CV (%)</td>
<td>7.81</td>
<td></td>
<td>10.01</td>
<td></td>
</tr>
</tbody>
</table>

+ The means with the same capital letter in the same column are not statistically significant different from each other according to the Tukey test at P≤0.05
+ The means with the same capital letter in the same row are not statistically significant different from each other according to the Tukey test at P≤0.05

Dry Matter Ratio (%): For silage dry matter (DM) ratios, varieties, years and variety x year interactions were found to be significant. DM ratios of the years and varieties varied between 24.75 and 38.94%. The DM ratios of the varieties alone varied between 29.68 and 35.34% with the greatest value in UNL hybrid genotype (Figure 1). DM ratio of the first year (35.59%) was greater than the second year (29.33%). Chakravarthi et al. (2017) reported DM ratios of sweet sorghum varieties as between 11.82 and 38.19% with an average value of 26.30%.

Digestible Dry Matter Ratio (%): Significant differences were not observed in digestible dry matter (DDM) ratios of the years and the varieties. DDM ratios of the years and varieties varied between 67.15 and 72.18% (Figure 1). Increasing stalk sugar content increase digestibility and feed quality (Poehlman, 1994; Blümml et al., 2009). Digestible dry matter ratios of sorghum were reported as between 56.96 and 70.65% (Junior et al., 2015; Karthikeyan et al., 2017).
Dry Matter Intake (%): Years and varieties were found to be significant for dry matter intake (DMI) values. DMI values of the years and varieties varied between 2.56 and 3.37% and DMI values of the varieties varied between 2.81 and 3.11% (Figure 2). The varieties Ramada and Rome had greater DMI values (>3%) than the others. Average DMI value of the second year (3.15%) was greater than the DMI value of the first year (2.74%). Karthikeyan et al. (2017) reported DMI values of sweet sorghum varieties as between 1.67 and 2.20% with an average value of 1.93%. Silage fermentation quality had significant effects on feed intake, nutrient use and milk yield of ruminants (Huhtanen et al., 2002).

Relative Feed Value: For relative feed value (RFV), both the years and the varieties were found to be significant. RFV of the years and varieties varied between 133.9 and 187.1. RFV of the varieties varied between 148.3 and 168.4 (Figure 2). The varieties Ramada and Rome had greater RFV (>165) than the others. Average RFV of the second year (168.9) was greater than the average RFV of the first year (144.1). The RFV value calculated based on 100% flowering period of alfalfa was assumed to be 100. Durul (2016) reported RFV of sweet sorghum varieties as between 104 and 126.

Crude Protein Yield (kg ha\(^{-1}\)): Variance analysis revealed that there were significant differences in silage crude protein (CP) yields of the varieties. The CP yields of the years and varieties varied between 1900 and 3128 kg ha\(^{-1}\) (Figure 3). The CP yields of the varieties varied between 2166 and 2905 kg ha\(^{-1}\) with the greater value in UNL hybrid genotype than the others.

Net Energy (Mcal kg\(^{-1}\)): Significant differences were not observed between the net energy values of the years and the varieties. Net energy values of the years and varieties varied between 1.498 and 1.590 Mcal kg\(^{-1}\) (Figure 3). High net energy values of sweet sorghum varieties are generally attributed to high water soluble carbohydrate content of sweet sorghum (Kaiser et al., 2004). Cattani et al. (2017) reported net energy values of sweet sorghum silage as 1.59 Mcal kg DM.

Method

(forages)

Guzzo,

Lauriault

Hadi

nutritive

maiz

Biofuels,

E

8

These

silage

and

climate

and

Eastern

SGS

silage

herbage

nutritive

revealed

of

bio

soil

(June

10.1017/S0014479713000616.

can

Indonesia

were

of

Bailoni

alternative

findi

Bean

15th

It

L.

and

utilization

varieties

the

(E.

second

varieties

period

grown

were

and

20

Whiteley

than

Reddy

Effects

had

areas

silage

NE

and

(22)

sorghum

for

based

50

salinity

RFV

No91

Silage

104

et

Bali

L.

of

untapped

with

M

Ramada

L.(

Association of Official Analytical Chemists).

Techn.

Forage

quality.

Zougmoré

different

silage

bean

sweet

of

Mantovani

J.

563

Biotechno

Bio

values

A.

W.

Official

sorghum

10.1186/s40104

at

doi:

farming

C.

and

K

Agrifood

Y.

B.

yield,

than

S.

c

Effect

sorghum

yield

study

replacement

investigated

matter

S.

dry

varieties

contributions

R.

laboratories.

the

and

R.

tim

of

A

farmers

used

Nutr.

The

Yücel

R.

Anim.

and

K

ha

stem

W.

with

R.

hybrid

Helping

of

sorghum

forage

Ekambaram

K.

and

M81-E,

Topper-76, UNL hybrid and No91 varieties were prominent with herbage and DM yield; Ramada and Roma varieties were prominent with silage quality attributes. It was observed in this study conducted at second-crop growing period (June-October) under Eastern Mediterranean (Adana) conditions for 100-120 days that there were sweet sorghum varieties among the investigated plant materials with herbage, dry matter and crude protein yields of above 180 Mg ha⁻¹, 50 Mg ha⁻¹ and 2.3 Mg ha⁻¹, respectively. These varieties had RFV of above 150. Such a value was greater than the RFV of several other feed crops. It was concluded based on present findings that sorghum varieties grown in southern coasts of Turkey had 3-4 times greater yields than maize (Korkmaz et al., 2015; Yücel et al., 2015) and silage quality attributes (NDF, ADF, DMI and RFV) were also better than maize silage. As compared to maize, sorghum is more tolerant to drought and high temperatures, has less fertilizer demands and soil preference. Thus, sorghum can be used as an alternative silage crop to maize and can have great contributions to quality forage supply of the country.

REFERENCES

Durul, G. (2016). Effect of different cutting times on some quality properties of sweet sorghum (Sorghum bicolor (L.) Moench var. Saccharatum) and bean (Phaseolus vulgaris) silage mixtures. Ege

Figure 3. Silage CP yield and NE values of sweet sorghum varieties

Conclusion: Present findings revealed that M81-E, Topper-76, UNL hybrid and No91 varieties were prominent with herbage and DM yield; Ramada and Roma varieties were prominent with silage quality attributes. It was observed in this study conducted at second-crop growing period (June-October) under Eastern Mediterranean (Adana) conditions for 100-120 days that there were sweet sorghum varieties among the investigated plant materials with herbage, dry matter and crude protein yields of above 180 Mg ha⁻¹, 50 Mg ha⁻¹ and 2.3 Mg ha⁻¹, respectively. These varieties had RFV of above 150. Such a value was greater than the RFV of several other feed crops. It was concluded based on present findings that sorghum varieties grown in southern coasts of Turkey had 3-4 times greater yields than maize (Korkmaz et al., 2015; Yücel et al., 2015) and silage quality attributes (NDF, ADF, DMI and RFV) were also better than maize silage. As compared to maize, sorghum is more tolerant to drought and high temperatures, has less fertilizer demands and soil preference. Thus, sorghum can be used as an alternative silage crop to maize and can have great contributions to quality forage supply of the country.
University, Institute of Science and Technology, Field Crops Department, M.Sc. Thesis, 72 p (in Turkish).

