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ABSTRACT

This study is concerned with use of generalized linear mixed models (GLMM) to analyse the repeated measurements
based on count data obtained from the sexual behaviors of male lambs. A combination of different optimization
techniques and covariance structures were applied to four constructed models.  These models were defined in terms of
random effect specifications. Therefore, residuals was assumed to be random (Model A), intercept assumed to be random
effect (Model B), time (slope) assumed to be random effect (Model C) and both intercept and time assumed to be
random effects (Model D). Five different techniques quasi-newton (QUANEW), newton-raphson (NEWRAP), trust
region (TRUREG), newton-raphson ridge (NRRIDG) and double-dogleg (DBLDOG) optimization techniques were used
for analyzing these models. Three different covariance structures compound symmetry (CS), unstructured (UN) and first-
order autoregressive (AR(1)) were used. In conclusion, based on likelihood criteria, the Model A with CS structure
outperformed other models for the repeated measurement data of sexual behavior characteristics.
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INTRODUCTION

Mixed model methodology is essential to
properly identify the variance-covariance structure
among the data in the analysis of the repeated measures
(Akbaş et al., 2001; Eyduran and Akbaş 2010; Orhan et
al., 2010).

If a dependent variable in a data set is normally
distributed, population-averaged model, general linear
model, subject-specific model and general linear mixed
model are used in combination with the standard models.
However, in cases when the dependent variable is not
normal distributed, population-averaged models and as an
extension of these models, Generalized Linear Model
(GLM) and Generalized Estimation Equation (GEE) are
used. At same time, in subject-specific models,
Generalized Linear Mixed Models (GLMM) are used
(Singer and Willet 2003).

Generalized Linear Model makes an estimation
combining likelihood based on approaches with
regression analysis for random variables. While doing
this, GLM defines the distribution of random variables in
the form of exponential distribution uses the function of
expected values of the variables instead of the variables
themself (Dobson, 1990; McCulloch and Searle 2001).

Generalized Linear Mixed Model is an extension
of GLM, consists of the random effects in addition to
fixed effect. Thus, GLMM makes parameter estimates for
both fixed and random effects in the model. At the same
time, GLMM is practical because it takes into account the
over-dispersion which is often observed among the

random variables and it models the dependency among
response variables specific to repeated measurements
(McCullah and Nelder 1989).

MATERIALS AND METHODS

Data used in this study were obtained
Norduz male lambs which were measured at different age
periods. Study material consisted of total of 32 Norduz
male lambs. The studies of determination sexual
behaviors of the male lambs were started when the male
lambs were 6- months old. Sexual behaviors tests were
done once a fortnight until they were 12 months old and
between 12 and 13 just one test was carried out. Using a
data set of sexual behaviors of male lambs, four different
models were constructed in this study. The vocalization
were included to the models as dependent variable, while
the frequency of mount, the response of flehmen, the
weight of male lambs, the anogenital sniffing, the raising
of tail and duration of mount were integrated as
independent variables to the model.

Generalized Linear Mixed Models: Generalized Linear
Mixed Model is an extension of GLM which consists of
the random effects in addition to fixed effect. A standard
linear mixed model,

eZuXY   (1)

In equation (1), X and Z are the design matrices
of fixed and random effect,  and u are the parameter
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vectors for fixed and random effects and e is an error
vector, respectively.

In a standard mixed linear model;

 RZuXMVNuy ,~|  ,  GMVNu ,0~ and

),0(~ RMVNe . However, in GLMM, there is no need

to define  RMVNe ,0~ assumption for error term.

As in standard linear mixed model,  GMVNu ,0~
the assumption is valid in GLMM, too. General form of
GLMM with the link function determined according to
the distribution form of the dependent variable as given
below:

   uZXuYEg iiij  | or

      iiiiij guZXguYE    11| (2)

(Yeşilova, 2003; Dang et al., 2008; Rabe-Hesketh and
Skrondal 2009).

In our study we used four different models
designed for GLMM method.

Random residual model (Model A): Random
residual model is also considered as a marginal model. In
the model, R-side covariance parameters are obtained and
dependency among the results is modeled. This model is
defined as,

         11| gZuXguYE (3)

Random intercept model (Model B): This is a

random intercept model  0 . The model assumes that

each individual has a different intercept. At the minimum
one explanatory variable is added to the model.  In the
model, time is the explanatory variable. This model is
defined as,

Level1: ijijjij etY  10  (4)

Level 2: jj u000  
As it is understood from the above given explanation,

intercept  j0 is random while  ij are fixed. In

addition,  ju0 indicates random change in amount of the

second level around  0 . On the other hand, means of

random terms in the model are zero, while variance and
covariances are       0,,, 0

2
0

2  jijujeij ueCovuVareVar 

respectively.
Random time model (Model C): In this model, only time
is random. The constructed model assumes that each
individual has a different slope. This model is defined as
followed,

Level 1: ijijjij etY  10  (5)

Level 2: jj u111  

In Equation (5), time or slope  j1 is random, intercept

 0 is fixed. Furthermore  ju1 indicates random

change in amount of second level around  1 . The

variance and covariances of the random components in
the model can be written as followed respectively,

      0,,, 1
2

1
2

1
 jijujeij ueCovuVareVar

j


Random intercept time model (Model D): In the model,

both intercept  0 and time or slope  1 are random.

The model expresses that each individual has a specific
intercept and slope. This model is,

Level 1: ijijjjij etY  10  (6)

Level 2: jj u000  

jj u111  

where  ju0 and  ju1 are random variables of the

second level for  j0 and  j1 , respectively (Candy,

2000; Hox, 2002; Akkol et al., 2007; Jiang, 2007).
Five different optimization techniques were used

in the analysis of these models. These models are Quasi-
Newton (QUANEW), Newton-Raphson (NEWRAP),
Trust Region (TRUREG), Newton-Raphson Ridge
(NRRIDG), Double-Dogleg (DBLDOG). Furthermore,
together with these optimization techniques, three
different covariance structures were used which are
Compound Symmetry (CS), Unstructured (UN) and First-
order autoregressive (AR(1)). Data were analyzed using
Proc Glimmix procedures in SAS 9.2 software (SAS,
2010).

Parameter Estimation: PQL (Penalized Quasi
Likelihood) and MQL (Marginal Quasi Likelihood)
methods were generally used for parameter estimations in
GLMM. In this study, PQL method was used for
parameter estimation. In PQL method, using Taylor
expansion, linearity is achieved around fixed and random

̂ and û effects, respectively. As a result, if Taylor

expansion of   ijijijij uzxhY   ˆˆ '' and  .h are

written in matrix form, the PQL equation is obtained as
following,

  *1* ˆˆˆˆ
iiiiiiiiiii uZXuZXYVY    (7)

In Equation (7), iV̂ is equal to the diagonal matrix with

diagonal element  ijV ̂ ,  *i mean is zero, variance is

 iiV 1ˆ  , iX and iZ are the design matrices,

respectively. Given starting values for the parameters ,
G and in the marginal likelihood function, empirical



Ser et al., J. Anim. Plant Sci. 23(6):2013

1585

Bayes estimates are calculated for iu and then pseudo

data *
iY are computed. Then, the approximate linear

mixed model is fitted, yielding updated estimates for  ,

G and  . These are then used to update the pseudo data

and this whole scheme is iterated until a convergence
criterion is reached (Molenberghs and Verbeke 2005).

RESULTS

AIC and BIC results obtained from different
optimization techniques and covariance structure from
four models are given Table 1.

Table 1. Goodness of fit results obtained from different optimization techniques and covariance structures for
Model A, Model B, Model C and Model D

Optimizatin
Techniques

Covariace
Structures

Model A Model B Model C Model D
Pseudo-
AIC

Pseudo-
BIC

Pseudo-
AIC

Pseudo-
BIC

Pseudo-
AIC

Pseudo-
BIC

Pseudo-
AIC

Pseudo-
BIC

QUANEW CS 744.18 747.11 998.87 1001.80 1109.57 1112.50 1048.85 1051.78
UN1 - - 996.87 998.34 1107.57 1109.03 951.78 956.17

AR(1) 762.07 765.00 998.87 1001.80 1109.57 1112.50 1048.85 1051.78
NEWRAP CS 744.18 747.11 998.87 1001.80 1109.57 1112.50 1048.85 1051.78

UN1 - - 996.87 998.34 1107.57 1109.03 951.78 956.17
AR(1) 762.07 765.00 998.87 1001.80 1109.57 1112.50 1048.85 1051.78

TRUREG CS 744.18 747.11 998.87 1001.80 1109.57 1112.50 1048.85 1051.78
UN1 - - 996.87 998.34 1107.57 1109.03 951.78 956.17

AR(1) 762.07 765.00 998.87 1001.80 1109.57 1112.50 1048.85 1051.78
NRRIDG CS 744.18 747.11 998.87 1001.80 1109.57 1112.50 1048.85 1051.78

UN1 - - 996.87 998.34 1107.57 1109.03 951.78 956.17
AR(1) 762.07 765.00 998.87 1001.80 1109.57 1112.50 1048.85 1051.78

DBLDOG CS 744.18 747.11 998.87 1001.80 1109.57 1112.50 1048.85 1051.78
UN1 - - 996.87 998.34 1107.57 1109.03 - -

AR(1) 762.07 765.00 998.87 1001.80 1109.57 1112.50 1048.85 1051.78
1AIC and BIC could not obtained

Table 2. Parameter estimates and standard error values of different models

Parameters Model A Model B Model C Model D
Estimation

(SEM)
Estimation

(SEM)
Estimation

(SEM)
Estimation

(SEM)
Intercept 2.761***

(0.364)
2.964***

(0.245)
2.054***

(0.256)
2.745***

(0.387)
Weight of male lambs -0.024**

(0.007)
-0.033***

(0.004)
0.006
(0.006)

-0.029**

(0.007)
Response of flehmen 0.024

(0.027)
0.024

(0.016)
0.017
(0.016)

0.033*

(0.017)
Anogenital sniffing 0.071***

(0.012)
0.074***

(0.007)
0.068***

(0.007)
0.074***

(0.007)
Raising of tail 0.010

(0.025)
-0.013
(0.015)

0.012
(0.013)

0.005
(0.016)

Duration of mount -0.001*

(0.001)
-0.001***

(0.000)
-0.001***

(0.000)
-0.001**

(0.000)
Frequency of mount 0.024***

(0.004)
0.025***

(0.003)
0.021***

(0.002)
0.025***

(0.003)
*P<0.05;**P<0.01; ***P<0.001

The smaller values of the model selection
criteria (AIC and BIC) given in Table 1 indicate the best
combination of optimization technique and covariance
structure for models (Model A, B, C and D) used. The CS

structure resulted in a smaller AIC and BIC than other
covariance structures for all optimization tecniques.
Typically the AIC and BIC values for all covariance
structure and optimization tecnique combination
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increased drastically with model complexity. For
example the AIC values for QUANEW-CS combination
were 744.18, 998.87, 1109.57 and 1048.85 for Model A,
Model B, Model C and Model D, respectively. This
pattern was evident for AIC and BIC for all other
optimization technique-covariance structure
combinations.

Parameter estimates and their standard error
values relating to CS in Model A and UN in Model B, C
and D with all optimization techniques are shown in
Table 2. The anogenital sniffing, duration of mount,
frequency of mount and intercept were found to be
statistically significant on vocalization for all models
(p<0.05; p<0.01; p<0.001). Furthermore, the response of
flehmen was significant on vocalization in Model D
(p<0.05) only. The anogenital sniffing and frequency of
mount had the greatest effect on vocalization regardless
the model used. Likewise the duration of mount had a
negative and significant effect on vocalization for all
models. Similarly, except in Model C, the weight of male
lambs had a negative effect and was significant on
vocalization in Model A, B and D.

DISCUSSION

In the results of optimization techniques, all
models reached a convergence (for pre-specified an
acceptable difference between two consecutive log
likelihood functions) at different number of iterations.
For Model A, Model B, Model C and Model D iteration
number varied between 11-42, 4-16, 4-7 and 5-97,
respectively. It was found that, for Model A, the highest
number of iterations was obtained from QUANEW and
DBLDOG optimization techniques with CS structures
(17-42 number of iterations); for Model B, the highest
number of iterations was obtained from DBLDOG
optimization technique with CS structure (16 iterations);
for Model C, the highest number of iterations was
obtained from QUANEW and DBLDOG techniques with
CS, UN and AR(1) structures (7 iterations); the highest
number of iterations was obtained from DBLDOG
optimization technique and AR (1) covariance structures
(97 iterations) for Model D. When compared to
TRUREG, NRRIDG and NEWRAP optimization
techniques, QUANEW and DBLDOG require a higher
number of iterations. However, because of theoretical
structure of these optimization techniques, each iteration
can be obtained much faster to avoid time consuming for
big data set (SAS, 2008; Ser, 2011).

In GLMM, goodness of fit criteria are calculated
as pseudo-AIC and pseudo-BIC. As it is known,
goodness of fit criteria like AIC and BIC are calculated
from log-likelihood values. In GLMM, since pseudo-
likelihood value is calculated, obtained goodness of fit
criteria are pseudo-AIC and pseudo-BIC (SAS, 2008).
When AIC and BIC goodness of fit criteria in Model A

were evaluated on Table 1,  in all optimization
techniques, the smallest goodness of fit criterion was
obtained from CS, which had a homogenous structure. In
CS structure variance values in diagonal elements, in
other words, the measurements at all times have the same
variance while covariance among the observation values
is fixed. In model where intercept (Model B) and time
(Model C) are randomly constructed, when goodness of
fit criteria is evaluated, it was found that UN covariance
structure had the best adaptation to all optimization
techniques. There are no assumptions for the variance
and covariance in case of UN; however there is a
heterogeneous structure (Akbaş et al., 2001; Weiss, 2005;
Ser, 2011). Furthermore, no convergence problem was
observed in these models. In Model D, in random time
and intercept model, it was found that UN was the
smallest goodness of fit criterion in all optimization
methods. However, AR (1) covariance structure for all
models to the data set had the worst goodness of fit
criteria for the model specified. According to this finding,
for the male lambs with low vocalization frequency, the
time between the moment of entering test arena and
realization of mount behavior is shortened. Similarly,
male lambs which have a low live weight tend to show a
higher ratio of vocalization behavior since they are
unable to show mount behavior. In addition, high
courting behavior frequency observed before breeding
activity in male lambs results from lack of sexual
experience. The effect of male lambs age on the quality
of sexual activity was found to be significant in many
studies (Katz et al., 1988; Price et al., 1988; Yılmaz et
al., 2009). This also indicates that it is important to
enable the male lambs to gain sexual experience within
the framework of flock management programs.

Based on the optimization techniques and
covariance structures used in the models, since no
convergence problem was encountered, it can be stated
that Model B and Model C had the best adaptation to the
used data set. In addition, when compared to other
models, these models required lower number of iterations
to reach convergence. While UN covariance structure
provided the best adaptation to the data set in Model B, C
and D, as a result of CS structure, a good adaptation was
obtained only for Model A.

In conclusion covariance patterns and
optimization techniques are two critical issue in repeated
data analysis. There are many choices of covariance
patterns for modeling repeated measures data. Choosing
the most appropriate pattern is important in order to draw
accurate conclusions. On the other hand the optimization
technique plays and essential role for faster converge
which is critically important for big data set with many
parameters.
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