MOLECULAR CHARACTERIZATION OF THE 16SR II GROUP OF PHYTOPLASMA ASSOCIATED WITH FABA BEAN (Vicia faba L.) IN SAUDI ARABIA

M. A. AL-Saleh and M. A. Amer*

Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh 11451. Kingdom of Saudi Arabia.

*Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt.

Corresponding author E-mail: malsaleh@ksu.edu.sa

ABSTRACT

This study was conducted to detect for the first time the occurrence of phytoplasma in symptomatic faba bean plants in Saudi Arabia. Faba bean is one of the most widely grown protein-producing food legumes. Ten leaf and stem samples showing symptoms of phyllody and stunting were collected from plants grown in Agricultural Research Station field Riyadh region, Saudi Arabia during December, 2011. The temperature in this area ranged between 15-20°C. Two representative faba bean symptomatic leaves out of the total samples collected from the field in the visited area tested positive for plant pathogenic phytoplasmas using P1/P7 primer pair in the first round of PCR analysis. Nested PCR was conducted using the R16F2n/R16R2 primer pair, which yielded fragment of approximately 1.2 kb. No PCR products were obtained from the DNA extraction from asymptomatic plants. Phylogenetic analysis of the 16S rRNA gene of the obtained nucleotide sequence indicated that the two faba bean phytoplasmas isolates (faba bean phyllody and faba bean stunting) collected from Riyadh region of Saudi Arabia were more closely related to the phytoplasmas peanut witches'-broom group since its 16Sr RNA sequence showed a 97.2% to 99.3% identity with most members of this group. The nucleotide sequence for the Saudi Arabian isolates in this study were deposited in the GenBank with accession no. JQ861532 and JQ861533 respectively. The rest of the collected samples were assayed using cDNA probe for phytoplasma detection by dot and tissue blot hybridization. No hybridization was observed with DNA extracts from healthy plants.

Key words: Faba bean, Phytoplasma, PCR, 16SrII group, sequence, cDNA probe.

INTRODUCTION

Faba bean (Vicia faba L.) crop is one of the most extensively cultivated pulses in the Arabian region. The 2010 world production of faba beans was 4.3 million tons from 2.55 million hectares, which is relatively small compared with soybean and pea world production (262 and 10 million tons, respectively). (FAOSTAT, 2010). This crop was reported to be infected by many viruses, bacteria and fungal diseases in Saudi Arabia (Amira Hassan 2010), but not report yet to be infected by phytoplasmas disease agents. A member of the peanut witches'-broom phytoplasma group (16Sr II group) of the phytoplasma taxonomy formerly was known under the new invalidated species name 'Candidatus Phytoplasma australasiae' (Firrao et al. 2004). This phytoplasma aaurantifolia group has been recorded from weeds, herbaceous and cultivated plants including fruits, vegetables, cereals and trees (McCoy et al. 1989; Tolu et al. 2006). Particularly in the Gulf region, the16Sr II group has been identified in lime (Zreik et al. 1992), alfalfa (Khan et al. 2002), sesame (Al-Sakeiti et al. 2005), alfalfa (Alhudaib 2009), lime (Alhudaib et al. 2009), and Tomato (Alhudaib and Rezk 2011). The 16Sr II group was detected in other crops in the Middle East region, including Iran and Lebanon (Weintraub and Jones 2010), Mediterranean region (Tolu et al. 2006), Australia (Aryamanesh et al. 2011), Mexico (Hernandez-Perez et al. 2009), Indonesia (Harling et al. 2009), Europe (Tolu et al. 2006; Davino et al. 2007; Parrella et al. 2008) and Sudan (Alfaro-Fernandez et al. 2012; Zamora et al. 2012). More than 300 phytoplasma agents causing diseases in different plant species belonging to field crops, vegetables, trees, and weeds as well as in their insect vectors have been reported (Streten and Gibb 2006; Hoshi et al., 2007; Parrella et al., 2008). In the 1990s, polymerase chain reaction (PCR) assays were developed for phytoplasma diagnostics (Deng and Hiruki 1991; Ahrens and Seemüller 1992; Lee et al. 1993; Schneider et al. 1995a; Gundersen and Lee 1996). The 16S rRNA gene is universal among prokaryotes and due to its conserved and variable regions; it provides a useful target for phytoplasma classification (Seemüller et al. 1998). All phytoplasma strains studied to date contain two rRNA operons (Firrao et al. 1996; Lauer and Seemüller 2000; Padovan et al. 2000; Marcone and Seemüller 2001) and a single tRNAlle in the spacer region between the 16S and 23S genes (Kuske and Kirkpatrick 1992; Smart et al. 1996). In the present study, we observed stunted plants
with shoe stringed leaves, phyllody and aborted flowers produced by phytoplasmas-like agents under tropical conditions. The aim of the present investigation was to detect and characterize, the agent associated with phytoplasma-like symptoms in faba bean fields for the first time in the Saudi Arabia.

MATERIALS AND METHODS

Source of the Faba bean phytoplasma samples: In December, 2011, ten leaves and stems samples of faba bean plants growing under tropical conditions showing typical phytoplasma-like symptoms which included stunting and phyllody (Fig.1) were collected from plants grown in Agricultural Research Station field, College of Food and Agriculture Sciences, King Saud University, Riyadh region, Saudi Arabia. Two of these samples were selected and analyzed for the presence of phytoplasmas using polymerase chain reaction (PCR) assays. These samples were chosen based on the symptoms expression, one sample show phyllody while the other one show stunting symptoms.

DNA extraction and PCR amplification: Total DNA was extracted from the symptomatic selected faba bean samples (leaf tissues) suspected with phytoplasma infection that were collected according to the protocol described by Arismendi et al. 2010. The DNA extracted from these samples was used as templates for the first round PCR using the universal phytoplasma primer pairs P1 and P7 (Deng and Hiruki 1991). For amplification, 1 DNA preparation from faba bean plants were used.

Fifty microliters of PCR reaction mixture were added to each PCR tube containing the following reaction mixture 1.25 units of the KAPA Long Range Hot Start DNA Polymerase, (2.5 µl/µl, KAPA BIOSYSTEMS, BIOLINE, USA, Inc), 0.3 mM dNTPs (10 mM each dNTP), 1x of 5X KAPA Long Range Buffer (without MgCl2), 1.75 mM MgCl2 (25 mM), 10 µM of each primer P1 / P7 and PCR grade water up to 50 µl. The DNA amplification program was used according to Khan et al. 2002.

In nested PCR a 1:40 dilution of PCR products amplified by P1/P7 primer pair was used as template for a second round of PCR with primer pair R16F2n/R16R2 (Gundersen and Lee 1996). The mixture of the nested-PCR reaction (50 µl) was prepared as previously described for the first PCR. A total of 35 thermal cycles were carried out which included denaturation for 1 min (2 min for first cycle) at 94°C, annealing for 2 min at 50°C, and extension for 3 min (10 min in final cycle) at 72°C. Reactions were cycled in a Mastercycler (Eppendorf, Flexlud, Nexus gradient, Germany). For electrophoresis analysis, aliquots 10 µl each of PCR amplified DNA products were mixed with gel loading buffer. Separation was done on a 1% agarose gel in 1XTE buffer (1x = 89 mM Tris, 89 mM borate, and 2 mM EDTA, pH 8.3). DNA was stained with ethidium bromide added to the gel at a concentration of 0.5 ug / ml. DNA was visualized on a UV transilluminator and photographed using DNA documentation gel analysis. DNA Hyper Ladder TM II ladder (BIOLINE, USA, Inc) was used to determine the size of RT- PCR amplified cDNA products.

DNA Sequencing and phylogenetic analyses: DNA fragment of the expected size from two Saudi Arabian isolate of phytoplasma affecting faba bean was excised and recovered with a Wizard PCR clean up kit (Promega, Madison, USA). The nucleotide sequences of these phytoplasma isolates were carried out in two directions with R16F2n/R16R2 primers at King Faisal Specialist Hospital & Research Center, Biological & Medical Research Department, Riyadh, Saudi Arabia using AB13730xl DNA Analyzer model HITACHI. Analyses of the obtained sequences were carried out using the DNAMAN software trial version 5.2.10 program (Lynnon BioSoft, Canada). To achieve a valid comparison, 22 phytoplasma isolate sequences obtained from GenBank database (table 1) were reduced to the longitude of the isolated sequences in this study.

Probe Generation, dot blot and tissue print hybridization: The cDNA probe was synthesized using PCR DIG Probe Synthesis Kit (Roche, Diagnostics GmbH, Mannheim, Germany) through PCR amplification from the phytoplasma infected faba bean plants. The rest of the collected samples were tested using cDNA probe for phytoplasma detection by dot blot hybridization. For dot blotting, sap extractions were prepared by grinding 50 mg of fresh plant tissues using the previous protocol for preparation of DNA as described by Arismendi et al. 2010. Five µl aliquots were spotted onto a nitrocellulose membrane. Stems were cut from different parts of each plant in the field and immediately printed on the nitrocellulose membranes. The membrane was denatured, air dried, irradiated with UV cross linker and kept at room temperature until hybridized according to El-Dougdog et al. 2010. The prepared digoxigenin labeled cDNA probe was used in dot blot and tissue print hybridization assays. Pre-hybridization and hybridization were carried out at 68°C (under conditions of high stringency) essentially as described by Pallas et al. 1998. Binding reaction of the probe with the DNA samples was immunologically detected using 200 µl freshly prepared Nitro blue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl-phosphate(BCIB) stock solution (Roche, Diagnostics GmbH, Mannheim, Germany). The reaction was stopped by washing the membranes for 5 min with 50 ml of water. The results were documented by photocopying the wet filter by photography.
RESULTS

Disease symptoms and PCR amplification: A wide range of symptoms were remarked on naturally infected faba bean. The main symptoms were observed as chlorosis, proliferation and stunting (Fig. 1-A) and phyllody and reduction in leaves sizes (Fig. 1-B). Total DNA extracted from the two different symptomatic samples of faba bean was analyzed by PCR. With universal primer pair P1/P7, weak DNA fragments of approximately 1,800 bp were amplified by first round PCR. While nested-PCR assay with the primer pair P1/P7 followed by the primer pair R16F2n/R16R2 yielded fragments of approximately 1.2 kbp.

Sequencing and phylogenetic analysis: To determine the 16Sr RNA group of the phytoplasma associated with faba bean stunting and phyllody, total DNA was extracted from the two symptomatic-bearing plants, and amplified by nested PCR using universal 16S rRNA phytoplasma primers R16F2n/R16R2. The nucleotide sequences were compared with the 16S rRNA gene sequences in the National Center for Biotechnology Information (NCBI) database. Phylogenetic analysis of the 16S rRNA gene of the obtained sequences indicated that the faba bean phyllody and stunting phytoplasma (FBP-Sa and FBS-Sa) isolates were more closely related (97.2-99.3%) to the phytoplasma peanut witches’-broom (16SrII) group since its 16SrDNA sequence showed a of identity with those of most of members of this group (Table 1and Figure 3). The two nucleotide sequences were deposited in NCBI accession no. JQ861532 and JQ861533 for faba bean phyllody and stunting phytoplasma respectively.

Dot blot and tissue printing hybridization assays: The digoxigenin-labeled probes specific for phytoplasma for 16S rDNA gene was used for tissue print (Fig. 4: A) and dot blot hybridization (Fig. 4: B). This probe gave positive purple color spots of hybridized nucleic acid extracted from the collected symptomatic plants (row a: FBP-Sa and row b: FBS-Sa) of faba bean plants from different parts under conditions of high stringency. The blots were showed strong hybridization signals in the area corresponding to the phloem in faba bean stem tissues when reacted with digoxigenin-labeled phytoplasma DNA probe. No signal was observed with DNA extraction from asymptomatic faba bean tissues (row c: 3, 4: Fig. 4). These results revealed the presence of phytoplasma infecting faba bean.

![Fig. 1. Faba bean plants exhibiting (A): stunting and proliferation with shortened internodes (B): Phyllody and little leaves of buds symptoms at the base of the stem into shoots in infected faba bean plants and C: asymptomatic faba bean plant.](image)

![Fig. 2. Electrophoresis pattern of 16S rDNA fragment (1.2 kb) amplified by nested polymerase chain reaction from two symptomatic faba bean plants in Saudi Arabia (lanes 2-3). No PCR amplification from asymptomatic plant (negative control) (Lane 1); Lane M, DNA HyperLadder™ II ladder (BIOLINE).](image)
Figure 3: A Phylogenetic relationships among the faba bean phyllody and stunting phytoplasmas from Saudi Arabia and selected phytoplasmas referenced in NCBI including group 16SrII using DNAMAN software analysis.

Table 1. Analysis of the sequence similarities among the 16S rRNA gene sequences from the phytoplasma grouped in the group 16SrII and the phytoplasma identified in the faba bean in Saudi Arabia. The similarity analysis was calculated using the DNAMAN Alignment software analysis.

<table>
<thead>
<tr>
<th>Accession No.</th>
<th>Phytoplasma Name</th>
<th>group</th>
<th>JQ861532</th>
<th>JQ861533</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB054986</td>
<td>Candidatus Phytoplasma castaneae</td>
<td>16SrVI</td>
<td>86.2%</td>
<td>87.4%</td>
</tr>
<tr>
<td>AF092209</td>
<td>Candidatus Phytoplasma fraxini</td>
<td>16SrVII</td>
<td>86.5%</td>
<td>87.7%</td>
</tr>
<tr>
<td>AF147708</td>
<td>Candidatus Phytoplasma brassiense</td>
<td>16SrXV</td>
<td>93.1%</td>
<td>93.8%</td>
</tr>
<tr>
<td>AY725228</td>
<td>Candidatus Phytoplasma graminis</td>
<td>16SrXII</td>
<td>82.4%</td>
<td>83.5%</td>
</tr>
<tr>
<td>AY725234</td>
<td>Candidatus Phytoplasma caricae</td>
<td>16SrXII</td>
<td>82.1%</td>
<td>82.6%</td>
</tr>
<tr>
<td>L76865</td>
<td>Candidatus Phytoplasma australiensis</td>
<td>16SrXII</td>
<td>83.8%</td>
<td>84.8%</td>
</tr>
<tr>
<td>D12581</td>
<td>Candidatus Phytoplasma oryzae</td>
<td>16SrXI</td>
<td>87.2%</td>
<td>88.5%</td>
</tr>
<tr>
<td>D12569</td>
<td>Onion yellows phytoplasma</td>
<td>16SrI</td>
<td>83.6%</td>
<td>84.5%</td>
</tr>
<tr>
<td>EF186827</td>
<td>Cotton phyllody phytoplasma</td>
<td>16SrII</td>
<td>98.9%</td>
<td>97.9%</td>
</tr>
<tr>
<td>EU125184</td>
<td>Pepper witches-broom phytoplasma</td>
<td>16SrII</td>
<td>98.0%</td>
<td>97.2%</td>
</tr>
<tr>
<td>FJ870549</td>
<td>Chickpea phyllody</td>
<td>16SrII</td>
<td>97.7%</td>
<td>99.2%</td>
</tr>
<tr>
<td>FJ914643</td>
<td>Mexican potato purple top phytoplasma</td>
<td>16SrII</td>
<td>98.3%</td>
<td>97.4%</td>
</tr>
<tr>
<td>FJ914651</td>
<td>Mexican potato purple top phytoplasma</td>
<td>16SrII</td>
<td>98.5%</td>
<td>97.7%</td>
</tr>
<tr>
<td>JN233801</td>
<td>'Vicia faba' stunting phytoplasma (SUDFb1)</td>
<td>16SrII</td>
<td>98.1%</td>
<td>99.2%</td>
</tr>
<tr>
<td>JN233802</td>
<td>'Cicer arietinum' little leaf phytoplasma (SUDCp2)</td>
<td>16SrII</td>
<td>98.1%</td>
<td>99.2%</td>
</tr>
<tr>
<td>JN233803</td>
<td>'Vicia faba' stunting phytoplasma (SUDFb3)</td>
<td>16SrII</td>
<td>98.0%</td>
<td>99.3%</td>
</tr>
<tr>
<td>JN233804</td>
<td>'Vicia faba' stunting phytoplasma (SUDFb4)</td>
<td>16SrII</td>
<td>98.1%</td>
<td>99.2%</td>
</tr>
<tr>
<td>JN885462</td>
<td>Echinacea purpurea witches-broom</td>
<td>16SrII</td>
<td>97.2%</td>
<td>99.1%</td>
</tr>
<tr>
<td>JQ861532</td>
<td>Saudi Arabia FB Phyllody</td>
<td>16SrII</td>
<td>100%</td>
<td>97.3%</td>
</tr>
<tr>
<td>JQ861533</td>
<td>Saudi Arabia FB Stunting</td>
<td>16SrII</td>
<td>97.3%</td>
<td>100%</td>
</tr>
<tr>
<td>HQ423156</td>
<td>Eggplant phyllody phytoplasma</td>
<td>16SrII</td>
<td>97.7%</td>
<td>99.2%</td>
</tr>
<tr>
<td>HQ589188</td>
<td>Faba bean phyllody phytoplasma</td>
<td>16SrII</td>
<td>99.2%</td>
<td>97.9%</td>
</tr>
<tr>
<td>L33765</td>
<td>Peanut witches-broom</td>
<td>16SrII</td>
<td>97.6%</td>
<td>99.1%</td>
</tr>
<tr>
<td>DQ233655</td>
<td>Fars(Iran) alfalfa witches'-broom phytoplasma</td>
<td>16SrII</td>
<td>99.1%</td>
<td>97.8%</td>
</tr>
</tbody>
</table>
DISCUSSION

Phytoplasma is considered to be one of the most important plant pathogens reducing the productivity of several economic crops. Symptoms due to phytoplasma infection are greatly variable according to the infected plants (Agrios 2005). There are different various methods available for demonstrating the presence of phytoplasma in diseased plants (Deeley et al. 1979; Hibben et al. 1986). Symptomatology is considered to be one of the major criteria for preliminary diagnosis of putative phytoplasma diseases. The symptoms observed in faba bean plants grown in the field did not resemble those produced by virus or fungal diseases and no phytoplasmas had been previously reported on faba bean in Saudi Arabia. Phytoplasmas have been reported to infect broad bean plants (Castro and Romero 2004; Schneider et al. 1995b). Phyloody symptoms of mung bean have been reported previously in India (Lakshmanan et al. 1988), Thailand (Chatchawankanphanich et al. 2000), and Australia (Wilson et al. 2001) and Pakistan (Akhtar et al. 2009). Moreira et al. 2010 reported that dry common bean plants (Phaseolus vulgaris) from the main production regions of Costa Rica have been affected by a disease. Main symptoms are a severe loss of bean pods due to flowering reduction or abortion, interveinal chlorosis, deformed leaves with corrugated midrib while diseased plants remaining green at harvest. Similar symptoms were previously associated with a phytoplasma infection in faba bean in Havana province and Sudan, therefore a possible phytoplasma infection was investigated (Alfaro-Fernandez et al. 2012; Zamora et al. 2012).

PCR assay not only provide a very sensitive means of detecting a specific phytoplasma strain but also, preferred in situations where the concentration of phytoplasma in a host is very low (Lee et al. 1994, Al-Awadhi et al. 2002). PCR assays using universal or broad-spectrum primers designed based on conserved sequences allow the detection of a wide array of unknown phytoplasma associated with plants and insects by amplification of the 16S rDNA region (Lim and Sears 1989; Lee et al. 1994; Gundersen and Lee 1996 and Al-Awadhi et al. 2002). Amplifications and detection of 16S rDNA region using universal primer (R16mF2/R16mR1) resulted in a DNA size of approximately 1450 bp. Universal primer pair was employed successfully to detect a wide range of phytoplasma from plant sources (Lee et al. 1993). Nested-PCR assay, designed to increase both sensitivity and specificity of detection and amplification of phytoplasma from tested samples in which low titers are present, or substantial inhibitors are present that may interfere with the PCR efficacy (Lee et al. 1994; Gundersen and Lee 1996). PCR using a universal primer pair followed by a group-specific primer pair (nested-PCR) is capable of detection of dual or multiple phytoplasma present in the infected tissues in case of mixed infection (Lee et al. 1994). Nested-PCR with primer pair R16F2n/R16R2n resulted in DNA amplification of approximately 1200 bp. The use of nested PCR enables the detection of a secondary phytoplasma in cases of mixed infection and proved to be more specific than universal PCR (Al-Awadhi et al. 2002).

DNA Extracted from faba bean symptomatic and a symptomatic plant tissues (leaves and stems) were used for dot blot and tissue printing hybridization experiments to detect of this phytoplasma using nucleic acid hybridization assay. Our results showed that the DNA probe prepared during this study enabled the detection of this phytoplasma in faba bean plant. On the other hand, the DNA probe gave no signal with printing and extracts of healthy faba bean. In previously studies, DNA hybridization was used for identification of different phytoplasma associated with peanut, sweet potato witches'-broom and other phytoplasma disease (Chen and Lin 1997; Ko and Lin 1994). The only faba bean phytoplasma causing phyloody and stunting symptoms was described in the Sudan (Dafalla and Cousin 1988; Alfaro-Fernandez et al. 2012), and was classified by RFLPs in the 16SrII group (Saeed and Cousin 1995; Lee et al. 1998) or in the FBP group (Seemüller et al. 1998). This is thought to be the first report of a phytoplasma from the group 16SrII infecting faba bean in Sudan, but in Spain using sequence and Phylogenetic analysis indicated that this phytoplasma infecting Spanish faba bean clustered in the 16SrIII group (Castro and Romero 2004). This is thought to be the first report of a phytoplasma from this group infecting faba bean in Spain. Also the 16S rI group has been previously recorded in broad bean and sweet pepper and other vegetable crops in western Cuba (Arocha et al. 2007; Zamora et al. 2012), and it has been also associated with 'amachamiento' disease of dry common bean in Costa Rica (Moreira et al. 2010). In our results, the Saudi Arabia faba bean phytoplasma was found to be taxonomically related to group16SrII, where the member type is peanut witches'-broom phytoplasma group based on sequence and phylogenetic analysis. This is the first report of a phytoplasma witches'-broom disease associated with faba bean phyloody and stunting infecting faba bean crop in Saudi Arabia and also the first of a Fabaceae phytoplasma in this country. More studies are needed to establish the incidence and impact of these phytoplasma other legume in Saudi Arabia.

Acknowledgments: The authors are grateful to the Agricultural Research Center (ARC) at the College of Food and Agricultural Sciences, King Saud University for the financial support. Also, we thank Dr. Ahmed Ali Al-Qahtani at Biological and Medical Research Department, King Faisal Specialist Hospital and
REFERENCES

