GENETIC VARIABILITY AND CORRELATION STUDIES IN F₄ POPULATIONS OF UPLAND COTTON

H. Raza¹, N.U. Khan², S.A. Khan³, S. Gul⁴, A. Latif⁵, I. Hussain¹, J. Khan¹, S. Raza⁴ and M. Baloch⁵

¹Department of Agricultural Sciences, University of Haripur - Pakistan
²Department of Plant Breeding and Genetics, The University of Agriculture, Peshawar - Pakistan
³Agricultural Research System, Khyber Pakhtunkhwa - Pakistan
⁴Department of Botany, Abdul Wali Khan University, Mardan - Pakistan
⁵Department of Plant Breeding and Genetics, Sindh Agriculture University, Tandojam - Pakistan

Corresponding author’s Email: Naqib Ullah Khan <nukmarwat@yahoo.com>

Abstract

Genetic variability, heritability and correlation studies were carried out among F₄ populations of upland cotton during 2014 at the University of Agriculture, Peshawar, Pakistan. Eight upland cotton genotypes i.e. SLH-284, CIM-446, CIM-473, CIM-496, CIM-499, CIM-506, CIM-554 and CIM-707 and their 59 F₂ populations were grown in a randomized complete block design with three replications. Genotype means revealed highly significant differences for all the traits. On average, the F₄ populations showed best performance than parental cultivars for yield attributing traits and eventually increased the seed cotton yield. Heritabilities (broad sense) were moderate to high in magnitude for all the traits. Major yield components i.e., plant height, bolls per sympodia, boll weight and seeds per boll showed significant (p < 0.01) positive correlation with seed cotton yield. However, monopodia showed non-significant positive correlation. Overall, the F₄ populations CIM-707 × CIM-506 S₁, CIM-446 × CIM-284 S₂, SLH-284 × CIM-499 S₂ and CIM-554 × CIM-473 S₂ exhibited maximum boll weight and bolls per sympodia and eventually the seed cotton yield. Results further revealed that F₄ populations with larger genetic potential, positive association between yield and yield contributing traits and moderate to high heritability could guide intensive selection for improvement in segregating populations.

Key words: Genetic variability; correlation; heritability; yield related traits; F₄ populations; upland cotton

INTRODUCTION

Upland cotton (Gossypium hirsutum L.) leads the world’s cotton fiber production and accounting for approximately 90%. Cotton is an important cash crop in Pakistan and sustains millions of people in many sectors such as production, ginning factories, textile mills, export, and business of cotton byproducts (Imran et al., 2011; Khan et al., 2015). During 2014-15, cotton crop was grown on 2.961 million hectares and seed cotton production was 13,983 million bales with average seed cotton yield of 802 kg ha⁻¹ (PBS, 2015). Our national yield is still low than other cotton growing countries due to low yielding genotypes, cotton leaf curl virus (CLCuV), insect pests, rains and floods (Khan et al., 2011).

Plant breeders are interested in quantitative rather than qualitative genetics as majority of the characters including seed cotton and lint yields, their components and fiber quality traits are polygenic. The success of cotton programme is largely depends on the choice and exploitation of potential parental cultivars for hybridization, followed by selection for favorable gene combinations. However, variation in a population controlled and modified to a greater extent by the environment (Gul et al., 2014). Knowledge about genetic variability provides dependable tool to the breeder for crop improvement. Higher heritability, genetic advance and interdependence of yield and yield components are earnestly required by the breeder to improve yield and fiber quality of cotton genotypes (Abbas et al., 2013). Consequently, in plant breeding, the identification and exploitation of genotypes with better genetic potential is a continuous pre-requisite for production of physiologically efficient and genetically superior genotypes showing promise for enhanced production per unit area under a given set of environmental conditions. Therefore, widespread study of the genetic mechanism of the plant characteristics is necessary.

Before initiating any cotton improvement program, information about the genetic potential of various genotypes, heritability and inheritance pattern of various characters and degree of association of yield with various morphological and yield traits is important for the breeders to handle a problem wisely and enhance the yield to a sufficient extent (Ahmad et al., 2008; Makhdoom et al., 2010). Similarly, association of heritability with selection response helps in understanding the mode of inheritance of various quantitative traits (Tabasum et al., 2012). Therefore, a research project was planned to quantify the genetic potential, heritability and genetic gain in F₄ populations.
and their parental genotypes and correlation of seed cotton yield with various morpho-yield traits.

MATERIALS AND METHODS

Breeding material and experimental design: Parental genotypes i.e. SLH-284, CIM-446, CIM-473, CIM-496, CIM-499, CIM-506, CIM-544 and CIM-707 and their 59 F4 populations (selection made in F3 during 2013) were grown during the crop season 2014 at The University of Agriculture, Peshawar, Pakistan. The experiment was laid out in a randomized complete block (RCB) design with three replications. Each treatment had four rows, five meters long and having 30 and 75 cm plants and rows spacing, respectively. Thinning was performed after two weeks of germination to ensure single plant per hill. Similarly, other cultural practices including hoeing, irrigation, fertilizer and insecticide applications were carried out as per recommended package for cotton. Two hand pickings were made on individual plant basis during the month of November and to record the data on various variables.

Traits measurement and statistical analyses: Data were recorded on plant height, monopodia per plant, bolls per sympodia, boll weight, seeds per boll and seed cotton yield. All the data were subjected to analysis of variance (Steel et al., 1997). Means for each trait were further separated and compared by using least significant difference (LSD) test at 5% level of probability. Genotypic (GCV) and phenotypic coefficients of variance (PCV), heritability (broad sense) and genetic advance were computed according to Burton and Devane (1953), Johnson et al. (1955) and Singh and Chaudhary (1985).

RESULTS AND DISCUSSION

Analysis of variance revealed that mean values of the F4 populations and their parental lines showed highly significant differences for all the traits (Table 1). Plant height ranged from 94.73 to 121.20 cm and 76.67 to 159.00 cm in parental cultivars and F4 populations, respectively (Fig. 1). The F4 population CIM-446 × CIM-707 S2 showed minimum plant height (76.67 cm) and was at par with seven other F4 populations ranging from 77.07 to 93.00 cm. However, maximum plant height (159.00 cm) was observed in F4 population SLH-284 × CIM-499 S3 and it was found at par with F3 population CIM-554 × CIM-506 S2 (147.33 cm). The later genotype was again at par with six other F4 populations ranged from 130.70 to 137.80 cm. Other genotypes revealed medium plant height. Genotypic (GCV) and phenotypic coefficients of variation (PCV) values for plant height were 12.73% and 13.82%, respectively. For plant height, the broad sense heritability was 0.85, while the selection response was 18.36 cm (Table 2). High estimates of heritability and selection response suggested that the genetic variance could play an important role in inheritance and improvement of the said trait. Heritability of different genotypes for various morpho-yield traits is earnestly required for the evaluation of parental cultivars for rewarding breeding programs (Bibi et al., 2011a, 2011b). High heritability coupled with selection response in cotton crop suggested the feasibility of selection in early segregating generations (Khan et al., 2010a; Batool et al., 2010).

Plant height revealed highly significant positive correlation (r = 0.369**) with seed cotton yield (Table 3). Significant positive correlation in upland cotton has also been reported between plant height and seed cotton yield in the past (Ahmad et al., 2008; Khan et al., 2009; 2010a). However, due to lodging threat, negative correlation of plant height with bolls per plants and seed cotton yield had been noticed in some previous studies in upland cotton (Elssidig et al., 2007; Makhdoom et al., 2010; Panni et al., 2012). Contradictory findings reported in past and present studies about the plant height might be due to genotypic and environmental variations and may be due to different genetic background of the breeding material used under various environmental conditions.

Monopodia per plant varied from 0.47 to 1.80 and 0.40 to 2.40 in parental genotypes and F4 populations, respectively (Fig. 2). The F4 population SLH-284 × CIM-707 S1 revealed minimum monopodia per plant (0.40) and was found at par with five other F4 populations and parental cultivars ranging from 0.46 to 1.06. However, F4 population CIM-473 × SLH-284 S1 exhibited maximum monopodia per plant (2.40) and the said population was found equal in performance with 12 F4 populations including five promising F4 populations and one parental cultivar CIM-506 ranging from 1.73 to 2.33 monopodia per plant. All other genotypes including parental cultivars and F4 populations showed medium number of monopodia. Genotypic coefficient of variability (36.77%) was smaller than phenotypic (42.29%). Heritability (bs) and selection response completely for monopodia per plant were 0.76 and 0.54, respectively (Table 2). Present results revealed that in inheritance of monopodia, the genetic variances played an important role and there is an opportunity in the said genotypes for further decrease in vegetative branches through intensive selection. In past studies, similar genetic variability was exhibited by various cotton populations for monopodia (Ahmad et al., 2008). Monopodia per plant manifested non-significant positive correlation (r = 0.113) with seed cotton yield (Table 3) and that is why the breeders are mostly interested in less or no monopodia. However, positive correlation of seed cotton yield with monopodia per plant in G. hirsutum L. genotypes was also reported (Bibi et al., 2011a). However, it was evident from the past studies that vegetative branches have direct negative effect on

1049
agronomic attributes of upland cotton (Ahmad et al., 2008; 2011).

Bolls per sympodia ranged from 1.40 to 2.07 and 1.23 to 2.50 in parental cultivars and F₂ populations, respectively (Fig. 3). However, on average, parental cultivars (1.72) and their F₂ populations (1.87) produced comparable bolls per sympodia. Maximum bolls per sympodia (2.50) were found in F₁ population CIM-707 × CIM-506 S₁ and it was found at par with seven other genotypes including one parental cultivar (CIM-496) ranging from 1.96 to 2.46. However, F₂ population CIM-506 × CIM-446 S₂ revealed minimum bolls per sympodia (1.23) and found at par with four other F₂ populations and five parental cultivars ranging from 1.26 to 1.76. Other genotypes were having medium number of bolls per sympodia. Genotypic and phenotypic coefficients of variation values were 10.92% and 15.02%, respectively. Heritability (bs) and selection response values were 0.53 and 0.21, respectively (Table 2). Heritability and expected response to selection also exhibited that bolls per sympodia were mostly administered by genetic variance and has span for further improvement.

Correlation between bolls per sympodia and seed cotton yield was highly significant positive (r = 0.437**) (Table 3). Bolls per sympodia also play an important role in managing seed cotton yield and act as a major yield component and showed increase in F₁ population than parental genotypes by comparing the mean ranges as discussed in the former paragraph. Results exhibited that bolls per sympodia were found positively correlated with seed cotton yield, therefore, the genotypes having maximum bolls per sympodia also provided increased seed cotton yield. Seed cotton yield and yield components including bolls per sympodia revealed positive association in G. hirsutum L. (Khan et al., 2009). Plant type characteristic like bolls per sympodia had positive association with seed cotton yield in cotton (Bibi et al., 2011a). Fruiting branches showed positive relationship with plant height and that association may be considered as selection criteria to have indirect improvement in seed cotton yield in upland cotton (Ahmad et al., 2011).

Boll weight ranged from 2.50 to 3.29 g and 2.46 to 4.15 g in parental cultivars and F₂ populations, respectively (Fig. 4). On average, F₂ populations (3.15 g) showed increased boll weight than parental cultivars (2.95 g). Maximum boll weight (4.15 g) was shown by F₂ population CIM-707 × CIM-506 S₁ and it was found at par with nine other F₂ populations ranging from 3.53 to 4.11 g. The F₂ population CIM-707 × SLH-284 S₂ revealed minimum boll weight (2.46 g) and was found alike in performance with three other F₂ populations viz., CIM-473 × CIM-707 S₂, CIM-707 × CIM-499 S₂, CIM-473 × CIM-499 S₂ and five parental cultivars (CIM-499, CIM-506, CIM-446, CIM-707 and CIM-446). Other genotypes including parental cultivars and F₂ populations revealed medium boll weight. Genotypic coefficient of variability (9.58%) was smaller than phenotypic coefficient of variability (11.95%) for boll weight. Heritability (bs) and selection response values for boll weight were 0.64 and 0.34 g, respectively (Table 2). High broad sense heritability and significant positive correlation of boll weight with yield was also illustrated in upland cotton (Ahmad et al., 2008). In past studies, moderate to high heritability was observed for bolls per plant, boll weight and seed cotton yield in upland cotton and suggested that these traits have much room for further improvement through selection in early segregating generations in upland cotton (Khan et al., 2009; Batool et al., 2010; Khan et al., 2010a; Ahmad et al., 2011). Correlation of boll weight with seed cotton yield was significant positive (r = 0.328**) (Table 3). Boll weight is also an imperative yield trait after boll number, and therefore, the trait should be focused during evaluation of genotypes for enhanced seed cotton yield. In early segregating generations, the correlation between boll weight and seed cotton yield was positive in upland cotton (Soomro et al., 2010; Khan et al., 2007).

Seeds per boll varied from 26.84 to 31.72 and 22.73 to 31.33 in parental cultivars and F₂ populations, respectively (Fig. 5). On average, the parental cultivars showed more seeds per boll (29.87) than their F₂ populations (26.56). Maximum seeds per boll (31.72) were observed in parental cultivar CIM-496, however, it was found at par with 16 F₂ populations (in which the promising ones were SLH-284 × CIM-473 S₁, CIM-554 × CIM-473 S₂, CIM-506 × CIM-499 S₁) and six parental cultivars (CIM-707, CIM-499, CIM-446, SLH-284, CIM-473 and CIM-506) ranging from 27.87 to 31.33. However, F₂ populations viz., CIM-473 × CIM-499 S₂, CIM-446 × SLH-284 S₂, CIM-473 × CIM-707 S₂, CIM-707 × SLH-284 S₂, CIM-473 × CIM-499 S₁ and CIM-707 × CIM-499 S₁ revealed minimum seeds per boll, and were found at par with 32 other F₂ populations ranging from 23.73 to 26.47. All other F₂ populations showed medium seeds per boll. For seeds per boll, the genotypic and phenotypic coefficients of variations values were 5.71% and 7.70%, respectively. Broad sense heritability was 0.55, whereas the selection response value was 1.59 (Table 2). Heritability estimates with expected response to selection were moderate. Seeds per boll had significant (p ≤0.01) positive correlation (r = 0.197**) with seed cotton yield (Table 3). Significant positive association justified that said genotypes have genetic potential to boost up the seeds per boll. Fibers are the direct product of cottonseed, and due to this reason, seeds per boll play an important role in managing the seed cotton and lint yields. Past investigations showed that seeds per boll had positive association with yield in upland cotton (Bibi et al., 2011b). The cotton genotypes revealed greater genetic variation for seeds per boll and boll weight and these traits manages the seed cotton and
lint yields in upland cotton (Makhdoom et al., 2010). Similarly, medium heritability was also observed for seeds per boll in upland cotton populations (Bibi et al., 2011a). However, in some other studies, the seeds per boll manifested non-significant negative correlation with seed cotton yield (Khan et al., 2010a, 2010b). Therefore, during selection, breeders must keep in mind direct and indirect effects of seeds per boll on seed cotton yield.

Seed cotton yield per plant ranged from 58.32 to 80.96 g and 40.27 to 123.28 g in parental cultivars and F4 populations, respectively (Fig. 6). On average, the F4 populations showed more seed cotton yield per plant (80.49 g) than their parental cultivars (73.08 g). The F4 population CIM-707 × CIM-506 S1 exhibited maximum seed cotton yield (123.28 g), and it was found at par with eight other F4 populations (CIM-446 × CIM-284 S2, SLH-284 × CIM-499 S2, CIM-499 × CIM-554 × CIM-496 S1, CIM-499 × CIM-707 S1, CIM-707 × CIM-499 S1, CIM-499 × CIM-554 × CIM-473 S2 and CIM-499 × CIM-506 S1) ranging from 98.13 to 122.20 g. However, the F4 population CIM-473 × CIM-499 S1 revealed minimum (40.27 g) seed cotton yield and found alike with five other F4 populations (CIM-446 × CIM-707 S1, CIM-446 × CIM-707 S2, CIM-506 × CIM-446 S2, CIM-473 × CIM-499 S2 and CIM-446 × CIM-554 S2) and two parental cultivars (CIM-446 and CIM-499) ranging from 44.80 to 65.43 g. All other F4 populations and parental cultivars were having medium seed cotton yield per plant. Genotypic coefficient of variation (19.43%) was found smaller than phenotypic coefficient of variability (22.63%). Broad sense heritability and selection response values were 0.74 and 18.59 g, respectively, for seed cotton yield per plant (Table 2). Greater genetic variability, heritability and genetic advance values were noted with positive correlation of seed cotton yield with bolls per plant and lint yield at both genotypic and phenotypic levels (Elsiddig et al., 2007; Desalegn et al., 2009; Khan et al., 2009, 2010a). Seed cotton yield is the final output of the crop, which mainly depends on boll number and boll weight. In present study, seed cotton yield was positively interrelated with all the characters. Yield is complex trait and depends on yield components, and that is why the yield management is difficult than all other morphological and yield related traits (Ahmed et al., 2006; Magadum et al., 2012). The seeds per plant and boll weight executed high positive direct impact on seed cotton yield and these results were in line with findings of past researchers (Iqbal et al., 2006; Preetha and Raveendran, 2007; Iqbal et al., 2011).

Table 1. Mean squares with CV (%) for various traits in upland cotton.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean squares</th>
<th>F. Ratio</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Replications (d.f. = 02)</td>
<td>Genotypes (d.f. = 66)</td>
<td>Error (d.f. = 132)</td>
</tr>
<tr>
<td>Plant height</td>
<td>918.571</td>
<td>718.192</td>
<td>109.452</td>
</tr>
<tr>
<td>Monopodia per plant</td>
<td>0.732</td>
<td>0.786</td>
<td>0.197</td>
</tr>
<tr>
<td>Bolls per sympodia</td>
<td>1.032</td>
<td>0.233</td>
<td>0.110</td>
</tr>
<tr>
<td>Boll weight</td>
<td>0.186</td>
<td>0.445</td>
<td>0.176</td>
</tr>
<tr>
<td>Seeds per boll</td>
<td>22.479</td>
<td>12.936</td>
<td>5.840</td>
</tr>
<tr>
<td>Seed cotton yield per plant</td>
<td>4399.794</td>
<td>967.456</td>
<td>249.829</td>
</tr>
</tbody>
</table>

* *** = Significant at p ≤0.05 and p ≤0.01, d.f. = degree of freedom, CV = coefficient of variation

Fig. 1. Mean performance of parental cultivars and their F4 populations for plant height in upland cotton.
Fig. 2. Mean performance of parental cultivars and their F_4 populations for monopodia in upland cotton.

Fig. 3. Mean performance of parental cultivars and their F_4 populations for bolls per sympodia in upland cotton.

Fig. 4. Mean performance of parental cultivars and their F_4 populations for boll weight in upland cotton.
Fig. 5. Mean performance of parental cultivars and their F₄ populations for seeds per boll in upland cotton.

Fig. 6. Mean performance of parental cultivars and their F₄ populations for seed cotton yield in upland cotton.

Table 2. Genetic, environmental and phenotypic variances with heritability for various morpho-yield traits in upland cotton.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Vg</th>
<th>Ve</th>
<th>Vp</th>
<th>GCV (%)</th>
<th>PCV (%)</th>
<th>h²</th>
<th>Re (20%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height</td>
<td>202.913</td>
<td>109.450</td>
<td>239.40</td>
<td>12.73</td>
<td>13.82</td>
<td>0.85</td>
<td>18.36</td>
</tr>
<tr>
<td>Monopodia per plant</td>
<td>0.196</td>
<td>0.190</td>
<td>0.26</td>
<td>36.77</td>
<td>42.29</td>
<td>0.76</td>
<td>0.54</td>
</tr>
<tr>
<td>Bolls per sympodia</td>
<td>0.041</td>
<td>0.110</td>
<td>0.08</td>
<td>10.92</td>
<td>15.02</td>
<td>0.53</td>
<td>0.21</td>
</tr>
<tr>
<td>Boll weight</td>
<td>0.090</td>
<td>0.150</td>
<td>0.14</td>
<td>9.58</td>
<td>11.95</td>
<td>0.64</td>
<td>0.34</td>
</tr>
<tr>
<td>Seeds per boll</td>
<td>2.365</td>
<td>5.840</td>
<td>4.31</td>
<td>5.71</td>
<td>7.70</td>
<td>0.55</td>
<td>1.59</td>
</tr>
<tr>
<td>Seed cotton yield per plant</td>
<td>239.209</td>
<td>255.940</td>
<td>324.52</td>
<td>19.43</td>
<td>22.63</td>
<td>0.74</td>
<td>18.59</td>
</tr>
</tbody>
</table>

Vg = Genetic variance, Ve = Environmental variance, Vp = Phenotypic variance, GCV = Genotypic coefficient of variation, PCV = Phenotypic coefficient of variation, h² = Heritability (broad sense), Re = Selection response

Table 3. Correlation of seed cotton yield with various traits in upland cotton.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Correlation with seed cotton yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height</td>
<td>0.369**</td>
</tr>
<tr>
<td>Monopodia per plant</td>
<td>0.113NS</td>
</tr>
<tr>
<td>Bolls per sympodia</td>
<td>0.437**</td>
</tr>
<tr>
<td>Boll weight</td>
<td>0.328**</td>
</tr>
<tr>
<td>Seeds per boll</td>
<td>0.197**</td>
</tr>
</tbody>
</table>

*, ** = Significant at p ≤0.05 and p ≤0.01, NS = Non-significant
Conclusion: Parental cultivars and their F₁ populations exhibited highly significant differences for all the traits. Almost all the traits were highly heritable having prominent broad sense heritability with moderate to high genetic advance which can be utilized for improvement in future breeding programs. All the traits revealed positive association with seed cotton yield. The F₁ population CIM-707 × CIM-506 S₁, CIM-446 × CIM-284 S₂ and SLH-284 × CIM-499 S₂ exhibited maximum seed cotton yield; and therefore, these populations can be used in future breeding programs to enhance the seed cotton yield.

REFERENCES

